
Unit 2

Introduction to Complexity Analysis

King Fahd University of Petroleum & Minerals
College of Computer Science & Engineering

Information & Computer Science Department

Reading Assignment

 “Data Structures and Algorithms in Java”, 3rd Edition,
Adam Drozdek, Cengage Learning, ISBN 978-
9814239233
 Chapter 2 (Sections 1 – 8)
 Sections 2.9: Amortized Complexity and 2.10: NP-

Completeness are not included.

Outline

1. Computational and Asymptotic Complexity
2. Big-O Notation
3. Properties of Big-O Notation
4. Ω and Θ Notations
5. Warnings about Big-O Notation
6. Examples of Complexities
7. Finding Asymptotic Complexity: Examples
8. The Best, Average, and Worst Cases

How do we Measure Efficiency?

 There are often many different algorithms which can be used to solve
the same problem.
 For example, assume that we want to search for a key in a sorted array.

 Thus, it makes sense to develop techniques that allow us to:
o compare different algorithms with respect to their “efficiency”
o choose the most efficient algorithm for the problem

 The efficiency of any algorithmic solution to a problem can be
measured according to the:

o Time efficiency: the time it takes to execute.
o Space efficiency: the space (primary or secondary memory) it uses.

 We will focus on an algorithm’s efficiency with respect to time.

How do we Measure Efficiency?

 Running time in [micro/milli] seconds
 Advantages

 Disadvantages

Computational and Asymptotic Complexity

 Computational complexity measures the degree
of difficulty of an algorithm

 Indicates how much effort is needed to apply an
algorithm or how costly it is

 To evaluate an algorithm’s efficiency, use logical
units that express a relationship such as:
 The size n of a file or an array
 The amount of time T required to process

the data
 Hence, it makes sense to specify that in terms of

T(n).

Computational and Asymptotic Complexity

 This measure of efficiency is called asymptotic
complexity

 It is used when disregarding certain terms of a
function
 To express the efficiency of an algorithm
 When calculating a function is difficult or impossible and

only approximations can be
found

f (n) = n2 + 100n + log10n + 1,000

Computational and Asymptotic Complexity

Figure 2-1 The growth rate of all terms of function
f (n) = n2 + 100n + log10n + 1,000

Big-O Notation

 Introduced in 1894, the big-O notation specifies
asymptotic complexity, which estimates the rate of
function growth

 Definition 1: f (n) is O(g(n)) if there exist positive
numbers c and N such that

f (n) ≤ cg(n) for all n ≥ N

Figure 2-2 Different values of c and N for function f (n) = 2n2 + 3n + 1 = O(n2)
calculated according to the definition of big-O

Big-O Notation (continued)

Figure 2-3 Comparison of functions for different values of c and N
from Figure 2-2

Properties of Big-O Notation

 Fact 1 (transitivity)
If f (n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n))

 Fact 2
If f (n) is O(h(n)) and g(n) is O(h(n)), then f(n) + g(n) is
O(h(n))

 Fact 3
The function ank is O(nk)

Properties of Big-O Notation

 Fact 4
The function nk is O(nk+j) for any positive j

 Fact 5
If f(n) = cg(n), then f(n) is O(g(n))

 Fact 6
If f(n) = g(n) + h(n), then f(n) is O(max{g(n),h(n)})

 Fact 7
If f(n) = g(n)*h(n), then f(n) is O(g(n)*h(n))

 Fact 8
The function loga n is O(logb n) for any positive
numbers a and b ≠ 1

 Fact 9
loga n is O(lg n) for any positive a ≠ 1, where
lg n = log2 n

Ω and Θ Notations

 Big-O notation refers to the upper bounds of
functions

 There is a symmetrical definition for a lower bound
in the definition of big-Ω

 Definition 2: The function f(n) is Ω(g(n)) if there
exist positive numbers c and N such that

f(n) ≥ cg(n) for all n ≥ N

Ω and Θ Notations

 The difference between this definition and the
definition of big-O notation is the direction of the
inequality

 One definition can be turned into the other by
replacing “≥” with “≤”

 There is an interconnection between these two
notations expressed by the equivalence

f (n) is Ω(g(n)) iff g(n) is O(f (n))

Ω and Θ Notations

 Definition 3: f(n) is Θ(g(n)) if there exist positive
numbers c1, c2, and N such that c1g(n) ≤ f(n) ≤
c2g(n) for all n ≥ N

 When applying any of these notations (big-O,Ω, and
Θ), remember they are approximations that hide
some detail that in many cases may be considered
important

Warnings about O-Notation

 Big-O notation cannot compare algorithms in the same
complexity class.

 Big-O notation only gives sensible comparisons of
algorithms in different complexity classes when n is
large .

 Consider two algorithms for same task:
Linear: f(n) = 1000 n
Quadratic: f'(n) = n2/1000
The quadratic one is faster for n < 1000000.

Examples of Complexities

 Algorithms can be classified by their time or space
complexities

 An algorithm is called constant if its execution time
remains the same for any number of elements, and
is denoted by O(1)

 It is called quadratic if its execution time is O(n2)

Examples of Complexities

Figure 2-4 Classes of algorithms and their execution times on a computer
executing 1 million operations per second (1 sec = 106 μsec = 103 msec)

Examples of Complexities

Figure 2-4 Classes of algorithms and their execution times on a computer
executing 1 million operations per second (1 sec = 106 μsec = 103 msec)

(continued)

Examples of Complexities

Figure 2-5 Typical functions applied in big-O estimates

Finding Asymptotic Complexity: Examples

 Asymptotic bounds are used to estimate the
efficiency of algorithms by assessing the amount of
time and memory needed to accomplish the task for
which the algorithms were designed

for (i = sum = 0; i < n; i++)

sum += a[i];

Finding Asymptotic Complexity: Examples

 Represent the cost of the for loop in summation form.
 The main idea is to make sure that we find an iterator that

increases/decreases its value by 1.
 For example, consider finding the number of times statements 1 and

2 get executed below:

for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)

statement1;
}

for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++)

statement2;
}

2

1 1 1 1
1 1

n n n n

i j i i
n n n

= = = =

= = =∑∑ ∑ ∑

()
1 1 1

1
1

2

n i n

i j i

n n
i

= = =

+
= =∑∑ ∑

Finding Asymptotic Complexity: Examples

 Represent the cost of the for loop in summation form.
 The problem in the example below is that the value of i does

not increase by 1

 i: k , k + m , k + 2m , …, k + rm
 Here, we can assume without loss of generality that k + rm = n, i.e. r = (n – k)/m
 i.e., an iterator s from 0, 1, …,r can be used

for (int i = k; i <= n; i = i + m)
statement1;

0 0
1 1 0 1 1

n kr m

s s

n k n k
m m

−

= =

− −
= = − + = +∑ ∑

Finding Asymptotic Complexity: Examples

for (i = 0; i < n; i++) {
for (j = 1, sum = a[0]; j <= i; j++)

sum += a[j];
System.out.println ("sum for subarray 0 through "+i+" is"

+ sum);
}

for (i = 4; i < n; i++) {
for (j = i-3, sum = a[i-4]; j <= i; j++)

sum += a[j];
System.out.println ("sum for subarray "+(i - 4)+" through

"+i+" is"+ sum);
}

Finding Asymptotic Complexity: Examples

for (i = 0, length = 1; i < n-1; i++) {
for (i1 = i2 = k = i; k < n-1 && a[k] < a[k+1];

k++, i2++);
if (length < i2 - i1 + 1)
length = i2 - i1 + 1;

System.out.println ("the length of the longest
ordered subarray is" + length);

}

Finding Asymptotic Complexity: Examples

int binarySearch(int[] arr, int key) {
int lo = 0, mid, hi = arr.length-1;
while (lo <= hi) {

mid = (lo + hi)/2;
if (key < arr[mid])

hi = mid - 1;
else if (arr[mid] < key)

lo = mid + 1;
else return mid; // success

}
return -1; // failure

}

Finding Asymptotic Complexity: Examples

 Suppose n is a power of 2. Determine the number of times statement 1 is
executed:

 Solution:
 The variables i and n in myMethod are different from the ones in the helper

method.
 In fact, n of “helper” is being called by variable i in “myMethod”.
 Hence, we need to change the name of variable i in helper because it is independent from i in myMethod (let us call

it k).

 We count the number of times statement1 gets executed as follows:
 (in myMethod) i : 1 , 2 , 22 , 23 ,…, 2r = n (r = log2 n)

Hence, we can use j where i = 2j j : 0 , 1 , 2 , 3, …, r = log2 n

static int myMethod(int n){
int sum = 0;
for(int i = 1; i <= n; i = i * 2)

sum = sum + i + helper(i);
return sum;

}

static int helper(int n){
int sum = 0;
for(int i = 1; i <= n; i++)

sum = sum + i; //statement1
return sum;

}

1

0 0 1 0 0
cost(Helper()) 1 2 2 1 2 1

r r i r r
j r

j j k j j
i i n+

= = = = =

= = = = − = −∑ ∑∑ ∑ ∑

Some Useful Formulas

()1 . 1
n n

i m i m
c c c n m

= =

 
= = − + 

 
∑ ∑

()
1

1
2

n

i

n n
i

=

+
=∑

()()2

1

1 2 1
6

n

i

n n n
i

=

+ +
=∑

() 2

3

1

1
2

n

i

n n
i

=

 +
=  
 

∑
1

0

1 , 1
1

nn
i

i

aa a
a

+

=

−
= ≠

−∑

Useful Logarithmic Formulas

Sequence of statements: Use Addition rule
O(s1; s2; s3; … sk) = O(s1) + O(s2) + O(s3) + … + O(sk)
= O(max(s1, s2, s3, . . . , sk))

Example:

Complexity is O(n2) + O(n) +O(1) = O(n2)

for (int j = 0; j < n * n; j++)
sum = sum + j;

for (int k = 0; k < n; k++)
sum = sum - l;

System.out.print("sum is now ” + sum);

How to determine complexity of code structures

char key;
int[] X = new int[n];
int[][] Y = new int[n][n];
........
switch(key) {

case 'a':
for(int i = 0; i < X.length; i++)

sum += X[i];
break;
case 'b':

for(int i = 0; i < Y.length; j++)
for(int j = 0; j < Y[0].length; j++)

sum += Y[i][j];
break;

} // End of switch block

Switch: Take the complexity of the most expensive case

o(n)

o(n2)

Overall Complexity: O(n2)

How to determine complexity of code structures

char key;
int[][] A = new int[n][n];
int[][] B = new int[n][n];
int[][] C = new int[n][n];
........
if(key == '+') {

for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)

C[i][j] = A[i][j] + B[i][j];
} // End of if block

else if(key == 'x')
C = matrixMult(A, B);

else
System.out.println("Error! Enter '+' or 'x'!");

If Statement: Take the complexity of the most expensive case :

O(n2)

O(n3)

O(1)

Overall
complexity
O(n3)

How to determine complexity of code structures

int[] integers = new int[n];
........
if(hasPrimes(integers) == true)

integers[0] = 20;
else

integers[0] = -20;

public boolean hasPrimes(int[] arr) {
for(int i = 0; i < arr.length; i++)

..........

..........
} // End of hasPrimes()

 Sometimes if-else statements must carefully be checked:
O(if-else) = O(Condition)+ Max[O(if), O(else)]

O(1)

O(1)

O(if-else) = O(Condition) = O(n)

O(n)

How to determine complexity of code structures

Best, Average, and Worst case complexities

 What is the best case complexity analysis?
 The smallest number of operations carried out by the algorithm for a given input.

 What is the worst case complexity analysis?
 The largest number of operations carried out by the algorithm for a given input.

 What is the average case complexity analysis?
 The number of operations carried out by the algorithm on average for all inputs.

 We are usually interested in the worst case complexity
 Easier to compute
 Represents an upper bound on the actual running time for all inputs
 Crucial to real-time systems (e.g. air-traffic control)

for each input i
(Probability of input i * Cost of input i)∑

Best, Average, and Worst case complexities: Example

 For linear search algorithm, searching for a key in an array of n
elements, determine the situation and the number of comparisons in
each of the following cases

 Best Case

 Worst Case

 Average Case

	Slide Number 1
	Reading Assignment
	Outline
	How do we Measure Efficiency?
	How do we Measure Efficiency?
	Computational and Asymptotic Complexity
	Computational and Asymptotic Complexity
	Computational and Asymptotic Complexity
	Big-O Notation
	Big-O Notation (continued)
	Properties of Big-O Notation
	Properties of Big-O Notation
	Ω and Θ Notations
	Ω and Θ Notations
	Ω and Θ Notations
	Warnings about O-Notation
	Examples of Complexities
	Examples of Complexities
	Examples of Complexities
	Examples of Complexities
	Finding Asymptotic Complexity: Examples
	Finding Asymptotic Complexity: Examples
	Finding Asymptotic Complexity: Examples
	Finding Asymptotic Complexity: Examples
	Finding Asymptotic Complexity: Examples
	Finding Asymptotic Complexity: Examples
	Finding Asymptotic Complexity: Examples
	Some Useful Formulas
	Useful Logarithmic Formulas
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Best, Average, and Worst case complexities
	Best, Average, and Worst case complexities: Example

