
Unit 3

Linked Lists

King Fahd University of Petroleum & Minerals
College of Computer Science & Engineering

Information & Computer Science Department

 “Data Structures and Algorithms in Java”, 3rd Edition,
Adam Drozdek, Cengage Learning, ISBN 978-
9814239233
 Chapter 3 (Sections 1 – 3)
 Sections 3.4-3.9 are not included.

Reading Assignment

Discuss the following topics:
 Singly Linked Lists
 Doubly Linked Lists
 Circular Lists

Objectives

3

 A linked structure is a collection of nodes storing data
and links to other nodes

 A linked list is a data structure composed of nodes,
each node holding some information and a reference to
another node in the list

 A singly linked list is a node that has a link only to its
successor in this sequence

Singly Linked Lists

4

Singly Linked Lists (continued)

5

Figure 3-1 A singly linked list

Singly Linked Lists (continued)

6

Figure 3-1 A singly linked list (continued)

//*********** SLLNode.java *****************
// node in a generic singly linked list class

public class SLLNode<T> {
public T info;
public SLLNode<T> next;
public SLLNode() {

this(null,null);
}
public SLLNode(T el) {

this(el, null);
}
public SLLNode(T el, SLLNode<T> ptr) {

info = el; next = ptr;
}

}

A Node in a Singly Linked List

7

A List in a Singly Linked List

8

//**************** SLL.java *******************
// a generic singly linked list class

public class SLL<T> {
protected SLLNode<T> head, tail;
public SLL() {

head = tail = null;
}
public boolean isEmpty() {

return head == null;
}

Singly Linked List Visualization

9

Figure 3-3 A singly linked list of integers

In the worst case, this operation is in O().

Insertion into Singly Linked Lists

10

Figure 3-4 Inserting a new node at the beginning of a singly linked list

Insertion into Singly Linked Lists (cont.)

11

Figure 3-5 Inserting a new node at the end of a singly linked list

In the worst case, this operation is in O().

Insertion into Singly Linked Lists (cont.)

12

public void addToHead(T el) {
head = new SLLNode<T>(el,head);
if (tail == null)

tail = head;
}

public void addToTail(T el) {
if (!isEmpty()) {

tail.next = new SLLNode<T>(el);
tail = tail.next;

}
else head = tail = new SLLNode<T>(el);

}

Deletion from Singly Linked Lists

13

Figure 3-6 Deleting a node from the beginning of a singly linked list

In the worst case, this operation is in O().

Deletion from Singly Linked Lists (cont.)

14

Figure 3-7 Deleting a node from the end of a singly linked list

In the worst case, this operation is in O().

Deletion from Singly Linked Lists (cont.)

15

public T deleteFromHead() { // delete head and return its
// info;

if (isEmpty())
return null;

T el = head.info;
if (head == tail) // if only one node on the list;

head = tail = null;
else head = head.next;
return el;

}

Deletion from Singly Linked Lists (cont.)

16

public T deleteFromTail() { // delete tail, return its info;
if (isEmpty())

return null;
T el = tail.info;
if (head == tail) // if only one node in list;

head = tail = null;
else { // if more than one node in list,

SLLNode<T> tmp; // find predecessor of tail;
for (tmp = head; tmp.next != tail; tmp = tmp.next);
tail = tmp; // predecessor of tail becomes tail;
tail.next = null;

}
return el;

}

Deletion from Singly Linked Lists (cont.)

17

public void delete(T el) { // delete the node with element el;
if (!isEmpty())

if (head == tail && el.equals(head.info)) // if only one
head = tail = null; // node on the list;

else if (el.equals(head.info)) // if > one node on list;
head = head.next; // and el is in the head node;

else { // if more than one node in list
SLLNode<T> pred, tmp;// and el is in a nonhead node;
for (pred = head, tmp = head.next;

tmp != null && !tmp.info.equals(el);
pred = pred.next, tmp = tmp.next);

if (tmp != null) { // if el was found;
pred.next = tmp.next;
if (tmp == tail) // if el is in the last node;

tail = pred;
}

}
}

Printing a Singly Linked List and
Checking an Element in a List

18

public void printAll() {
for (SLLNode<T> tmp = head; tmp != null; tmp = tmp.next)

System.out.print(tmp.info + " ");
}
public boolean isInList(T el) {

SLLNode<T> tmp;
for (tmp = head; tmp != null && !tmp.info.equals(el);

tmp = tmp.next);
return tmp != null;

}
}

 A doubly linked list is when each node in a linked list
has two reference fields, one to the successor and one
to the predecessor

Doubly Linked Lists

19

Figure 3-9 A doubly linked list

A Doubly Linked List Node

20

//****************** DLLNode.java *********************
// node of generic doubly linked list class

public class DLLNode<T> {
public T info;
public DLLNode<T> next, prev;
public DLLNode() {

next = null; prev = null;
}
public DLLNode(T el) {

info = el; next = null; prev = null;
}
public DLLNode(T el, DLLNode<T> n, DLLNode<T> p) {

info = el; next = n; prev = p;
}

}

A Doubly Linked List

21

//****************** DLL.java *********************
// generic doubly linked list class

public class DLL<T> {
private DLLNode<T> head, tail;
public DLL() {

head = tail = null;
}
public boolean isEmpty() {

return head == null;
}
public void setToNull() {

head = tail = null;
}

Insertion into Doubly Linked Lists

22

Figure 3-11 Adding a new node at the end of a doubly linked list

In the worst case, this operation is in O()

Insertion into Doubly Linked Lists (cont.)

23

Figure 3-11 Adding a new node at the end of a doubly linked list
(continued)

Insertion into Doubly Linked Lists (cont.)

24

public void addToTail(T el) {
if (tail != null) {

tail = new DLLNode<T>(el,null,tail);
tail.prev.next = tail;

}
else head = tail = new DLLNode<T>(el);

}

Deletion from Doubly Linked Lists

25

Figure 3-12 Deleting a node from the end of a doubly linked list

Deletion from Doubly Linked Lists (cont.)

26

public T deleteFromTail() {
if (isEmpty())

return null;
T el = tail.info;
if (head == tail) // if only one node on the list;

head = tail = null;
else { // if more than one node in list;

tail = tail.prev;
tail.next = null;

}
return el;

}

 A circular list is when nodes form a ring: The list is
finite and each node has a successor

Circular Lists

27

Figure 3-13 A circular singly linked list

Circular Lists (continued)

28

Figure 3-14 Inserting nodes at the front of a circular singly linked
list (a) and at its end (b)

Circular Lists (continued)

29

Figure 3-15 A circular doubly linked list

30

Summary

 A linked structure is a collection of nodes storing data
and links to other nodes.

 A linked list is a data structure composed of nodes,
each node holding some information and a reference to
another node in the list.

 A node in a singly linked list has a link only to its
successor in this sequence.

 A node in a doubly linked list has links to its successor
and predecessor in this sequence.

 A circular list is when nodes form a ring: The list is finite
and each node has a successor.

 The advantage of arrays over linked lists is that they
allow random accessing.

	Slide Number 1
	Reading Assignment
	Objectives
	Singly Linked Lists
	Singly Linked Lists (continued)
	Singly Linked Lists (continued)
	A Node in a Singly Linked List
	A List in a Singly Linked List
	Singly Linked List Visualization
	Insertion into Singly Linked Lists
	Insertion into Singly Linked Lists (cont.)
	Insertion into Singly Linked Lists (cont.)
	Deletion from Singly Linked Lists
	Deletion from Singly Linked Lists (cont.)
	Deletion from Singly Linked Lists (cont.)
	Deletion from Singly Linked Lists (cont.)
	Deletion from Singly Linked Lists (cont.)
	Printing a Singly Linked List and Checking an Element in a List
	Doubly Linked Lists
	A Doubly Linked List Node
	A Doubly Linked List
	Insertion into Doubly Linked Lists
	Insertion into Doubly Linked Lists (cont.)
	Insertion into Doubly Linked Lists (cont.)
	Deletion from Doubly Linked Lists
	Deletion from Doubly Linked Lists (cont.)
	Circular Lists
	Circular Lists (continued)
	Circular Lists (continued)
	Summary

