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King Fahd University of Petroleum & Minerals
College of Computer Science & Engineering

Information & Computer Science Department



Reading Assignment

 “Data Structures and Algorithms in Java”, 3rd Edition, 
Adam Drozdek, Cengage Learning, ISBN 978-
9814239233 
 Chapter 4



Objectives

Discuss the following topics: 
 Stacks
 Queues
 Priority Queues
 Case Study: Exiting a Maze [Self Reading]
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Stacks

 A stack is a linear data structure that can be 
accessed only at one of its ends for storing and 
retrieving data

 A stack is called an LIFO structure: last in/first out
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Stacks (continued)

 The following operations are needed to properly 
manage a stack:
 clear() — Clear the stack
 isEmpty() — Check to see if the stack is empty
 push(el) — Put the element el on the top of the stack
 pop() — Take the topmost element from the stack
 topEl() — Return the topmost element in the stack without 

removing it
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Stacks (continued)
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A series of operations executed on a stack



Stacks (continued)
public class Stack<T> {

private java.util.ArrayList<T> pool = new java.util.ArrayList<T>();
public Stack() {
}
public Stack(int n) {

pool.ensureCapacity(n);
}
public void clear() {

pool.clear();
}
public boolean isEmpty() {

return pool.isEmpty();
}
public T topEl() {

if (isEmpty())
throw new java.util.EmptyStackException();

return pool.get(pool.size()-1);
}
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public T pop() {
if (isEmpty())

throw new java.util.EmptyStackException();
return pool.remove(pool.size()-1);

}
public void push(T el) {

pool.add(el);
}
public String toString() {

return pool.toString();
}

}

Stacks (continued)
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Array list implementation of a stack (continued)
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public class LLStack<T> {
private java.util.LinkedList<T> list = new java.util.LinkedList<T>();
public LLStack() {
}
public void clear() {

list.clear();
}
public boolean isEmpty() {

return list.isEmpty();
}
public T topEl() {

if (isEmpty())
throw new java.util.EmptyStackException();

return list.getLast();
}

Stacks (continued)
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Implementing a stack as a linked list
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public T pop() {
if (isEmpty())

throw new java.util.EmptyStackException();
return list.removeLast();

}
public void push(T el) {

list.add(el);
}
public String toString() {

return list.toString();
}

}

Stacks (continued)
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Implementing a stack as a linked list (continued)
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Stacks (continued)
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A series of operations executed on an abstract stack (a) and the 
stack implemented with an array (b) and with a linked list (c)



Stacks in java.util
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A list of methods in java.util.Stack; all methods from 
Vector are inherited



Applications of Stack

 Some direct applications:
 Delimiter Matching
 Adding Large Numbers
 Evaluating postfix expressions
 Page-visited history in a Web browser
 Undo sequence in a text editor
 Chain of method calls in the Java Virtual Machine

 Some indirect applications
 Auxiliary data structure for some algorithms
 Component of other data structures

13



Delimiter Matching

 These examples are properly-delimited statements :
 a = b + (c – d ) * (e – f);
 g[10] = h[i[9]] + (j + k) * l;
 while (m < (n[8] + o)) { p = 7; /* initialize p */ r = 6; }

 These examples are statements in which mismatching occurs:
 a = b + (c – d) * (e – f));
 g[10] = h[i[9]] + j + k) * l;
 while (m < (n[8] + o]) { p = 7; /* initialize p */ r = 6; }
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Delimiter Matching Algorithm



Delimiter Matching
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Processing the statement s=t[5]+u/(v*(w+y)); with 
the algorithm delimiterMatching()



Delimiter Matching
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Processing the statement s=t[5]+u/(v*(w+y)); with 
the algorithm delimiterMatching() (continued)



Adding Large Numbers
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An example of adding numbers 592 and 3,784 using stacks



Application of Stacks: Evaluating Postfix Expressions

(5+9)*2+6*5
 An ordinary arithmetical expression like the above is 

called infix-expression -- binary operators appear in 
between their operands.

 The order of operations evaluation  is determined by 
the precedence rules and parenthesis. 

 When an evaluation order is desired that is different 
from that provided by the precedence, parentheses 
are used to override precedence rules.
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 Expressions can also be represented using postfix 
notation - where an operator comes after its two 
operands.

 The advantage of postfix notation is that the order of 
operation evaluation is unique without the need for 
precedence rules or parenthesis. 

PostfixInfix
16   2   /16 / 2 
2  14  +  5  * (2 + 14)* 5 
2   14  5  * + 2  +  14 * 5 
6  2  - 5  4  + * (6 – 2) * (5 + 4) 
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 The following algorithm uses a stack to evaluate a postfix expressions.

Start with an empty stack
for (each item in the expression) {

if (the item is a number)
Push the number onto the stack

else if (the item is an operator){
Pop two operands from the stack 

Apply the operator to the operands
Push the result onto the stack

}
}
Pop the only one number from the stack – that’s the result of the evaluation
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 Example: Consider the postfix expression,  2  10  +  9  6  - /, which is    
(2 + 10) / (9 - 6) in infix, the result of which is 12 / 3 = 4. 

 The following is a trace of the postfix evaluation algorithm for the above.
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Queues

 A queue is a waiting line that grows by adding 
elements to its end and shrinks by taking elements 
from its front

 A queue is a structure in which both ends are used: 
 One for adding new elements 
 One for removing them

 A queue is an FIFO structure: first in/first out
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Queues (continued)

 The following operations are needed to properly 
manage a queue:
 clear() — Clear the queue
 isEmpty() — Check to see if the queue is empty
 enqueue(el) — Put the element el at the end of the queue
 dequeue() — Take the first element from the queue
 firstEl() — Return the first element in the queue without 

removing it
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Queues (continued)

A series of operations executed on a queue
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Queues (continued)

Two possible configurations in an array implementation 
of a queue when the queue is full
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Queues (continued)

Array implementation of a queue
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Queues (continued)

Array implementation of a queue (continued)
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Queues (continued)

Array implementation of a queue (continued)
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public class Queue<T> {
private java.util.LinkedList<T> list = new java.util.LinkedList<T>();
public Queue() {
}
public void clear() {

list.clear();
}
public boolean isEmpty() {

return list.isEmpty();
}
public T firstEl() {

return list.getFirst();
}
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Queues (continued)

Linked list implementation of a queue
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public T dequeue() {
return list.removeFirst();

}
public void enqueue(T el) {

list.addLast(el);
}
public String toString() {

return list.toString();
}

}
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Queues (continued)

Linked list implementation of a queue (continued)
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Queues (continued)

 Queuing theory is when various scenarios are 
analyzed and models are built that use queues

A series of operations executed on an abstract queue (a) and the 
queue implemented with an array (b) and with a linked list (c)
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Queues (continued)

 In queuing theory, various scenarios are analyzed and 
models are built that use queues for processing requests 
or other information in a predetermined sequence (order)
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Queues (continued)

Bank One example: (a) data for number of arrived customers per 
one-minute interval and (b) transaction time in seconds per customer
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Queues (continued)

Bank One example: implementation code

class BankSimulation {
static java.util.Random rd = new java.util.Random();
static int Option(int percents[]) {

int i = 0, perc, choice = Math.abs(rd.nextInt()) % 100 + 1;
for (perc = percents[0]; perc < choice; perc += percents[i+1], i++);
return i;

}
public static void main(String args[]) {

int[] arrivals = {15,20,25,10,30};
int[] service = {0,0,0,10,5,10,10,0,15,25,10,15};
int[] clerks = {0,0,0};
int clerksSize = clerks.length;
int customers, t, i, numOfMinutes = 100, x;
double maxWait = 0.0, thereIsLine = 0.0, currWait = 0.0;
Queue<Integer> simulQ = new Queue<Integer>();
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Queues (continued)

Bank One example: implementation code (continued)

for (t = 1; t <= numOfMinutes; t++) {
System.out.print(" t = " + t);
for (i = 0; i < clerksSize; i++)// after each minute subtract

if (clerks[i] < 60)         // at most 60 seconds from time
clerks[i] = 0;         // left to service the current

else clerks[i] -= 60;       // customer by clerk i;
customers = Option(arrivals);
for (i = 0; i < customers; i++) { // enqueue all new customers

x = Option(service)*10;     // (or rather service time
simulQ.enqueue(x);          // they require);
currWait += x;

}
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Queues (continued)

Bank One example: implementation code (continued)

// dequeue customers when clerks are available:
for (i = 0; i < clerksSize && !simulQ.isEmpty(); )

if (clerks[i] < 60) {
x = simulQ.dequeue();  // assign more than one customer
clerks[i] += x;        // to a clerk if service time
currWait -= x;        // is still below 60 sec;

}
else i++;

if (!simulQ.isEmpty()) {
thereIsLine++;
System.out.printf(" wait = %.1f", currWait/60.0);
if (maxWait < currWait)

maxWait = currWait;
}
else System.out.print(" wait = 0;");

}
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Queues (continued)

Bank One example: implementation code (continued)

System.out.println("\nFor " + clerksSize + " clerks, there was a line "
+ thereIsLine/numOfMinutes*100.0 + "% of the time;\n"
+ "maximum wait time was " + maxWait/60.0 + " min.");

}
}
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Priority Queues

 A priority queue can be assigned to enable a 
particular process, or event, to be executed out of 
sequence without affecting overall system operation 

 In priority queues, elements are dequeued 
according to their priority and their current queue 
position
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Priority Queues (continued)

 Priority queues can be represented by two variations 
of linked lists:
 All elements are entry ordered
 Order is maintained by putting a new element 

in its proper position according to its priority
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