
Unit 13

Data Compression

King Fahd University of Petroleum & Minerals
College of Computer Science & Engineering

Information & Computer Science Department

 “Data Structures and Algorithms in Java”, 3rd
Edition, Adam Drozdek, Cengage Learning, ISBN
978-9814239233
 Chapter 11

 Section 11.2: Huffman Coding (11.2.1 is not included)
 Section 11.3: Run-Length Encoding
 Section 11.4: Ziv-Lempel Code (LZW is not included)

Reading Assignment

Data Compression and Huffman Coding

• Introduction
• What is Data Compression?
• Why Data Compression?

• Lossless and Lossy Data Compression
• Static, Adaptive, and Hybrid Compression

• Compression Utilities and Formats
• Compression Techniques

• Run-length Encoding
• Static Huffman Coding
• Lempel-Ziv Encoding

3

Introduction: What is Data Compression?

 Data compression is the representation of an
information source (e.g. a data file, a speech
signal, an image, or a video signal) as accurately
as possible using the fewest number of bits.

 Compressed data can only be understood if the decoding
method is known by the receiver.

4

Introduction: Why Data Compression?

• Data storage and transmission cost money. This cost increases with
the amount of data available.
• This cost can be reduced by processing the data so that it takes less memory and

less transmission time.

• Some data types consist of many chunks of repeated data (e.g.
multimedia data such as audio, video, images, …).
• Such “raw” data can be transformed into a compressed data representation form

saving a lot of storage and transmission costs.

• Disadvantage of Data compression:
Compressed data must be decompressed to be viewed (or heard), thus

extra processing is required.

5

Lossless and Lossy Compression Techniques

• Data compression techniques are broadly classified into lossless and
lossy.

• Lossless techniques enable exact reconstruction of the original
document from the compressed information.

• Exploit redundancy in data
• Applied to general data
• Examples: Run-length, Huffman, LZ77, LZ78, and LZW

• Lossy compression - reduces a file by permanently eliminating
certain redundant information

• Exploit redundancy and human perception
• Applied to audio, image, and video
• Examples: JPEG and MPEG

• Lossy techniques usually achieve higher compression rates than
lossless ones but the latter are more accurate.

6

Classification of Lossless Compression Techniques

• Lossless techniques are classified into static, adaptive (or dynamic), and hybrid.

• In a static method the mapping from the set of messages to the set of codewords is
fixed before transmission begins, so that a given message is represented by the same
codeword every time it appears in the message being encoded.

• Static coding requires two passes: one pass to compute probabilities (or
frequencies) and determine the mapping, and a second pass to encode.

• Examples: Static Huffman Coding

• In an adaptive method the mapping from the set of messages to the set of codewords
changes over time.

• All of the adaptive methods are one-pass methods; only one scan of the message
is required.

• Examples: LZ77, LZ78, LZW, and Adaptive Huffman Coding

• An algorithm may also be a hybrid, neither completely static nor completely dynamic.

7

Compression Utilities and Formats

• Compression tool examples:

 winzip, pkzip, compress, gzip

• General compression formats:

 .zip, .gz

• Common image compression formats:

JPEG, JPEG 2000, BMP, GIF, PCX, PNG, TGA, TIFF, WMP

• Common audio (sound) compression formats:

MPEG-1 Layer III (known as MP3), RealAudio (RA, RAM, RP), AU, Vorbis, WMA, AIFF, WAVE, G.729a

• Common video (sound and image) compression formats:

MPEG-1, MPEG-2, MPEG-4, DivX, Quicktime (MOV), RealVideo (RM), Windows Media Video (WMV),
Video for Windows (AVI), Flash video (FLV)

8

Compression Techniques

 Run-length Encoding
 Static Huffman Coding
 Lempel-Ziv Encoding

 LZ78 Encoding and Decoding

9

Run-length encoding

The following string:
 BBBBHHDDXXXXKKKKWWZZZZ
can be encoded more compactly by replacing each repeated string of characters by a single instance of
the repeated character and a number that represents the number of times it is repeated:
 B4H2D2X4K4W2Z4
Here "B4" means four B's, and “H2” means two H's, etc. Compressing a string in this way is called
run-length encoding.

As another example, consider the storage of a rectangular image. As a single color bitmapped image, it
can be stored as:

The rectangular image can be compressed with run-length encoding by counting identical bits as
follows:
 0, 40
 0, 40
 0,10 1,20 0,10
 0,10 1,1 0,18 1,1 0,10
 0,10 1,1 0,18 1,1 0,10
 0,10 1,1 0,18 1,1 0,10
 0,10 1,20 0,10
 0,40

The first line says that the first line of the
bitmap consists of 40 0's. The third line
says that the third line of the bitmap
consists of 10 0's followed by 20 1's
followed by 10 more 0's, and so on for the
other lines

B0 = # bits required before compression
B1 = # bits required after compression

Compression Ratio = B0 / B1.

10

Static Huffman Coding

• Static Huffman coding assigns variable length codes to
symbols based on their frequency of occurrences in the given
message. Low frequency symbols are encoded using many bits,
and high frequency symbols are encoded using fewer bits.

• The message to be transmitted is first analyzed to find the
relative frequencies of its constituent characters.

• The coding process generates a binary tree, the Huffman code
tree, with branches labeled with bits (0 and 1).

• The Huffman tree (or the character codeword pairs) must be
sent with the compressed information to enable the receiver
decode the message.

11

Static Huffman Coding Algorithm

Find the frequency of each character in the file to be compressed;

For each distinct character create a one-node binary tree containing the character and its frequency as
its priority;

Insert the one-node binary trees in a priority queue in increasing order of frequency;

while (there exists more than one tree in the priority queue) {
dequeue two trees t1 and t2;
Create a tree t that contains t1 as its left subtree and t2 as its right subtree; // 1
priority (t) = priority(t1) + priority(t2);
insert t in its proper location in the priority queue; // 2

}

Assign 0 and 1 weights to the edges of the resulting tree, such that the left and right edge of each node
do not have the same weight; // 3

Note: The Huffman code tree for a particular set of characters is not unique.
(Steps 1, 2, and 3 may be done differently).

12

Static Huffman Coding example

Example: Information to be transmitted over the internet contains
the following characters with their associated frequencies:

Use Huffman technique to answer the following questions:

 Build the Huffman code tree for the message.

 Use the Huffman tree to find the codeword for each character.

 If the data consists of only these characters, what is the total number of
bits to be transmitted? What is the compression ratio?

 Verify that your computed Huffman codewords satisfy the Prefix property.

tsonleaCharacter

53221845136545Frequency

13

Static Huffman Coding example (cont’d)
14

Static Huffman Coding example (cont’d)
15

Static Huffman Coding example (cont’d)
16

Static Huffman Coding example (cont’d)
17

Static Huffman Coding example (cont’d)

tsonlea character

000100111111011010110Huffman
codeword

The sequence of zeros and ones that are the arcs in the path from the root to each leaf node are
the desired codes:

18

Static Huffman Coding example (cont’d)

If we assume the message consists of only the characters a,e,l,n,o,s,t then the
number of bits for the compressed message will be 696:

If the message is sent uncompressed with 8-bit ASCII representation for the
characters, we have 261*8 = 2088 bits.

19

Static Huffman Coding example (cont’d)

Assuming that the number of character-codeword pairs and the pairs are included at the beginning of
the binary file containing the compressed message in the following format:

Number of bits for the transmitted file = bits(7) + bits(characters) + bits(codewords) + bits(compressed message)
= 3 + (7*8) + 21 + 696 = 776

Compression ratio = bits for ASCII representation / number of bits transmitted
= 2088 / 776 = 2.69

Thus, the size of the transmitted file is 100 / 2.69 = 37% of the original ASCII file

7
a110
e10
l0110
n111
o0111
s010
t00
sequence of zeroes and ones for the compressed message

in binary (significant bits)

Characters are in 8-bit ASCII
codes

20

The Prefix Property

 Data encoded using Huffman coding is uniquely decodable. This is
because Huffman codes satisfy an important property called the prefix
property:

In a given set of Huffman codewords, no codeword is a prefix of
another Huffman codeword

 For example, in a given set of Huffman codewords, 10 and 101 cannot
simultaneously be valid Huffman codewords because the first is a prefix
of the second.

 We can see by inspection that the codewords we generated in the
previous example are valid Huffman codewords.

21

The Prefix Property (cont’d)

To see why the prefix property is essential, consider the codewords given below
in which “e” is encoded with 110 which is a prefix of “f”

character a b c d e f
codeword 0 101 100 111 110 1100

The decoding of 11000100110 is ambiguous:

11000100110 => face

11000100110 => eaace

22

Encoding and decoding examples
 Encode (compress) the message tenseas using the following codewords:

Answer: Replace each character with its codeword:
001011101010110010

 Decode (decompress) each of the following encoded messages, if possible, using the Huffman
codeword tree given below 0110011101000 and 11101110101011:

tsonlea character

000100111111011010110Huffman
codeword

(a)0110011101000 => lost

(b) 11101110101011
The decoding fails because the
corresponding node for 11 is not a leaf

Answer: Decode a bit-stream by starting at the root and
proceeding down the tree according to the bits in the message
(0 = left, 1 = right). When a leaf is encountered, output the
character at that leaf and restart at the root .If a leaf cannot be
reached, the bit-stream cannot be decoded.

23

Lempel-Ziv Encoding
24

 Data compression up until the late 1970's mainly directed towards
creating better methodologies for Huffman coding.

 An innovative, radically different method was introduced in1977 by
Abraham Lempel and Jacob Ziv.

 This technique (called Lempel-Ziv) actually consists of two considerably
different algorithms, LZ77 and LZ78.

 Due to patents, LZ77 and LZ78 led to many variants:

 The zip and unzip use the LZH technique while UNIX's compress
methods belong to the LZW and LZC classes.

LZHLZBLZSSLZRLZ77
Variants

LZFGLZJLZMWLZTLZCLZWLZ78
Variants

LZ78 Compression Algorithm
25

LZ78 inserts one- or multi-character, non-overlapping, distinct patterns of
the message to be encoded in a Dictionary.

The multi-character patterns are of the form: C0C1 . . . Cn-1Cn. The prefix of
a pattern consists of all the pattern characters except the last: C0C1 . . . Cn-1

LZ78 Output:

Note: The dictionary is usually implemented as a hash table.

LZ78 Compression Algorithm (cont’d)
26

Dictionary ← empty ; Prefix ← empty ; DictionaryIndex ← 1;
while(characterStream is not empty)
{

Char ← next character in characterStream;
if(Prefix + Char exists in the Dictionary)

Prefix ← Prefix + Char ;
else
{

if(Prefix is empty)
CodeWordForPrefix ← 0 ;

else
CodeWordForPrefix ← DictionaryIndex for Prefix ;

Output: (CodeWordForPrefix, Char) ;
insertInDictionary((DictionaryIndex , Prefix + Char));
DictionaryIndex++ ;
Prefix ← empty ;

}
}
if(Prefix is not empty)
{

CodeWordForPrefix ← DictionaryIndex for Prefix;
Output: (CodeWordForPrefix ,) ;

}

Example 1: LZ78 Compression
27

Encode (i.e., compress) the string ABBCBCABABCAABCAAB using the LZ78 algorithm.

The compressed message is: (0,A)(0,B)(2,C)(3,A)(2,A)(4,A)(6,B)
Note: The above is just a representation, the commas and parentheses are not transmitted; we will
discuss the actual form of the compressed message later on in slide 32.

Example 1: LZ78 Compression (cont’d)
28

1. A is not in the Dictionary; insert it
2. B is not in the Dictionary; insert it
3. B is in the Dictionary.

BC is not in the Dictionary; insert it.
4. B is in the Dictionary.

BC is in the Dictionary.
BCA is not in the Dictionary; insert it.

5. B is in the Dictionary.
BA is not in the Dictionary; insert it.

6. B is in the Dictionary.
BC is in the Dictionary.
BCA is in the Dictionary.
BCAA is not in the Dictionary; insert it.

7. B is in the Dictionary.
BC is in the Dictionary.
BCA is in the Dictionary.
BCAA is in the Dictionary.
BCAAB is not in the Dictionary; insert it.

Example 2: LZ78 Compression
29

Encode (i.e., compress) the string BABAABRRRA using the LZ78 algorithm.

The compressed message is:
(0,B)(0,A)(1,A)(2,B)(0,R)(5,R)(2,)

Example 2: LZ78 Compression (cont’d)
30

1. B is not in the Dictionary; insert it
2. A is not in the Dictionary; insert it
3. B is in the Dictionary.

BA is not in the Dictionary; insert it.
4. A is in the Dictionary.

AB is not in the Dictionary; insert it.
5. R is not in the Dictionary; insert it.
6. R is in the Dictionary.

RR is not in the Dictionary; insert it.
7. A is in the Dictionary and it is the last input character; output a pair

containing its index: (2,)

Example 3: LZ78 Compression
Encode (i.e., compress) the string AAAAAAAAA using the LZ78 algorithm.

1. A is not in the Dictionary; insert it
2. A is in the Dictionary

AA is not in the Dictionary; insert it
3. A is in the Dictionary.

AA is in the Dictionary.
AAA is not in the Dictionary; insert it.

4. A is in the Dictionary.
AA is in the Dictionary.
AAA is in the Dictionary and it is the last pattern; output a pair containing its index: (3,)

31

LZ78 Compression: Number of bits transmitted

 Example: Uncompressed String: ABBCBCABABCAABCAAB
Number of bits = Total number of characters * 8

= 18 * 8
= 144 bits

 Suppose the codewords are indexed starting from 1:
Compressed string(codewords): (0, A) (0, B) (2, C) (3, A) (2, A) (4, A) (6, B)

Codeword index 1 2 3 4 5 6 7

• Each code word consists of an integer and a
character:

• The character is represented by 8 bits.

• The number of bits n required to represent
the integer part of the codeword with
index i is given by:

• Alternatively, the number of bits required to represent the
integer part of the codeword with index i is the number of
significant bits required to represent the integer i – 1 32

LZ78 Compression: Number of bits transmitted (cont’d)

Codeword (0, A) (0, B) (2, C) (3, A) (2, A) (4, A) (6, B)
index 1 2 3 4 5 6 7
Bits: (1 + 8) + (1 + 8) + (2 + 8) + (2 + 8) + (3 + 8) + (3 + 8) + (3 + 8) = 71 bits

The actual compressed message is: 0A0B10C11A010A100A110B

where each character is replaced by its binary 8-bit ASCII code.

33

LZ78 Decompression Algorithm
34

Dictionary ← empty ; DictionaryIndex ← 1 ;
while(there are more (CodeWord, Char) pairs in codestream){

CodeWord ← next CodeWord in codestream ;
Char ← character corresponding to CodeWord ;
if(CodeWord = = 0)

String ← empty ;
else

String ← string at index CodeWord in Dictionary ;
Output: String + Char ;
insertInDictionary((DictionaryIndex , String + Char)) ;

DictionaryIndex++;
}

Summary:
 input: (CW, character) pairs
 output:

if(CW == 0)
output: currentCharacter

else
output: stringAtIndex CW + currentCharacter

 Insert: current output in dictionary

Example 1: LZ78 Decompression

Decode (i.e., decompress) the sequence (0, A) (0, B) (2, C) (3, A) (2, A) (4, A) (6, B)

The decompressed message is:

ABBCBCABABCAABCAAB
35

Example 2: LZ78 Decompression

Decode (i.e., decompress) the sequence (0, B) (0, A) (1, A) (2, B) (0, R) (5, R) (2,)

The decompressed message is: BABAABRRRA 36

Example 3: LZ78 Decompression
37

Decode (i.e., decompress) the sequence (0, A) (1, A) (2, A) (3,)

The decompressed message is: AAAAAAAAA

Exercises

1. Using the Huffman tree constructed in this session, decode the
following sequence of bits, if possible. Otherwise, where does the
decoding fail?

10100010111010001000010011

2. Using the Huffman tree constructed in this session, write the bit
sequences that encode the messages:

test , state , telnet , notes

3. Mention one disadvantage of a lossless compression scheme and one
disadvantage of a lossy compression scheme.

4. Write a Java program that implements the Huffman coding
algorithm.

38

Exercises
39

5. Use LZ78 to trace encoding the string
SATATASACITASA.

6. Write a Java program that encodes a given string using
LZ78.

7. Write a Java program that decodes a given set of encoded
codewords using LZ78.

	Slide Number 1
	Reading Assignment
	Data Compression and Huffman Coding
	Introduction: What is Data Compression?
	Introduction: Why Data Compression?
	 Lossless and Lossy Compression Techniques
	Classification of Lossless Compression Techniques
	Compression Utilities and Formats
	Compression Techniques
	 Run-length encoding
	 Static Huffman Coding
	Static Huffman Coding Algorithm
	Static Huffman Coding example
	Static Huffman Coding example (cont’d)
	Static Huffman Coding example (cont’d)
	Static Huffman Coding example (cont’d)
	Static Huffman Coding example (cont’d)
	Static Huffman Coding example (cont’d)
	 Static Huffman Coding example (cont’d)
	 Static Huffman Coding example (cont’d)
	 The Prefix Property
	 The Prefix Property (cont’d)
	 Encoding and decoding examples
	Lempel-Ziv Encoding
	 LZ78 Compression Algorithm
	 LZ78 Compression Algorithm (cont’d)
	 Example 1: LZ78 Compression
	Example 1: LZ78 Compression (cont’d)
	Example 2: LZ78 Compression
	Example 2: LZ78 Compression (cont’d)
	Example 3: LZ78 Compression
	 LZ78 Compression: Number of bits transmitted
	 LZ78 Compression: Number of bits transmitted (cont’d)
	LZ78 Decompression Algorithm
	 Example 1: LZ78 Decompression
	 Example 2: LZ78 Decompression
	 Example 3: LZ78 Decompression
	Exercises
	Exercises

