
Unit 7

Trees, Tree Traversals and Binary
Search Trees

King Fahd University of Petroleum & Minerals
College of Computer Science & Engineering

Information & Computer Science Department

2

 “Data Structures and Algorithms in Java”, 3rd Edition,
Adam Drozdek, Cengage Learning, ISBN 978-
9814239233
 Chapter 6 Sections 1-6.
 Section 6.4.3 regarding “Stackless Depth-First Traversal” and

“Threaded Trees” is omitted.

Reading Assignment

3

Objectives

Discuss the following topics:
 Trees, Binary Trees, and Binary Search Trees

 Implementing Binary Trees
 Searching a Binary Search Tree
 Tree Traversal
 Binary Search Tree Insertion
 Binary Search Tree Deletion

Definition of a Tree

 A tree, is a finite set of nodes together with a finite set of edges
(arcs) that define parent-child relationships. Each edge connects a
parent to its child. Example:

Nodes={A,B,C,D,E,f,G,H}
Edges={(A,B),(A,E),(B,F),(B,G),(B,H),

(E,C),(E,D)}

 A path from node m1 to node mk is a list of nodes m1, m2, . . . , mk
such that each is the parent of the next node in the list.
 The length of such a path is k - 1.

 Example: A, E, C is a path of length 2.

A

BE

CD F H G

4

Definition of a Tree (Cont.)

 A tree satisfies the following properties:

1. It has one designated node, called the root, that has no parent.
2. Every node, except the root, has exactly one parent.
3. A node may have zero or more children.
4. There is a unique directed path from the root to each node.

5

2

4 1 6

3

5

2

4 1 6

3

5

2

4

1

6

3

tree Not a tree Not a tree

5

Tree Terminology

• Ordered tree: A tree in which the children of each node are linearly
ordered (usually from left to right).

• Ancestor of a node v: Any node, including v itself, on the path from
the root to the node.

• Proper ancestor of a node v: Any node, excluding v, on the path
from the root to the node.

A

CB

ED F G

Ancestors of Gproper ancestors of E

An Ordered Tree

6

Tree Terminology (Contd.)

 Descendant of a node v: Any node, including v itself, on any path
from the node to a leaf node (i.e., a node with no children).

 Proper descendant of a node v: Any node, excluding v, on any path
from the node to a leaf node.

 Subtree of a node v: A tree rooted at a child of v.

Descendants of a node C

A

CB

ED F G

Proper descendants
of node B

A

CB

ED F G
subtrees of node A

7

Tree Terminology (Contd.)

AA
B

D
H

C
E F G

JI

proper ancestors of node H

proper descendants
of node C

subtrees of A

AA
B

D
H

C
E F G

JI

parent of node D

child of node D

grandfather of nodes I,J

grandchildren of node C

8

Tree Terminology (Contd.)

 Degree: The number of subtrees of a node
 Each of node D and B

has degree 1.
 Each of node A and E

has degree 2.
 Node C has degree 3.
 Each of node F,G,H,I,J has degree 0.

 Leaf: A node with degree 0.
 Nonterminal or internal node: a node with degree greater than 0.
 Siblings: Nodes that have the same parent.
 Size: The number of nodes in a tree.

AA

B

D

H

C

E
F

G

JI

An Ordered Tree
with size of 10

Siblings
of E

Siblings of A

9

Tree Terminology (Contd.)

 Level (or depth) of a node v: The length of the path from
the root to node v plus one.
 Same as the number of nodes in the path.

 Height of a nonempty tree: The maximum level of a
node in a tree.
 By definition the height of an empty tree is 0.

AA

B

D

H

C

E F G

JI

k

Level 1

Level 2

Level 3

Level 4

Level 5

• The height of the tree is

10

5

11

Example Trees

Figure 6-1 Examples of trees

Importance of Trees

 Trees are very important data structures in computing.
 They are suitable for:

 Hierarchical structure representation, e.g.,
 File directory.
 Organizational structure of an institution.
 Class inheritance tree.

 Problem representation, e.g.,
 Expression tree.
 Decision tree.

 Efficient algorithmic solutions, e.g.,
 Search trees.
 Efficient priority queues via heaps.

12

13

Hierarchical Structure Representation

Figure 6-2 Hierarchical structure of a university shown as a tree

14

Orderly Trees

 An orderly tree is where all elements are stored
according to some predetermined criterion of ordering

Figure 6-3 Transforming (a) a linked list into (b) a tree

15

Binary Trees

 A binary tree is a tree whose nodes have two children
(possibly empty), and each child is designated as either
a left child or a right child

Figure 6-4 Examples of binary trees

Binary Trees

 Definition: A decision tree (full binary tree) is either an empty binary tree
or a binary tree in which every node is either a leaf node or an internal node
with two children.

• Definition: A complete binary tree is either an empty binary tree
or a binary tree in which all nonterminal nodes have both their
children, and all leaves are at the same level

16

17

Binary Trees

Figure 6-5 Adding a leaf to tree (a), preserving the relation of the
number of leaves to the number of nonterminal nodes (b)

Theorem: The number of leaves in a non-empty decision tree is one more than
the number of nonterminal nodes.

Binary Trees

 What is the maximum height of a binary tree with n
elements?

n

 What is the minimum height of a binary tree with n
elements?

lg(n +1)

 What is the minimum and maximum heights of a complete binary tree?
Both are lg(n +1)

 What is the minimum and maximum heights of a decision (full binary) tree?
lg(n +1) and n/2

18

Binary Search Trees

 Definition: A binary search tree (BST) is a binary tree that is
empty or that satisfies the BST ordering property:
1. The key of each node is greater than each key in the left subtree, if

any, of the node.
2. The key of each node is less than each key in the right subtree, if any,

of the node.
 Thus, each key in a BST is unique.

19

20

Binary Search Tree Examples

Figure 6-6 Examples of binary search trees

21

Implementing Binary Trees

 Binary trees can be implemented in at least two ways:
 As arrays
 As linked structures

 To implement a tree as an array, a node is declared as
an object with an information field and two “reference”
fields

22

Implementing Binary Trees

Figure 6-7 Array representation of the tree in Figure 6.6c

23

Implementing Binary Trees

Figure 6-8 Implementation of a generic binary search tree

/************************ BSTNode.java **************************
* node of a generic binary search tree
*/

public class BSTNode<T extends Comparable<? super T>> {
protected T el;
protected BSTNode<T> left, right;
public BSTNode() {

left = right = null;
}
public BSTNode(T el) {

this(el,null,null);
}
public BSTNode(T el, BSTNode<T> lt, BSTNode<T> rt) {

this.el = el; left = lt; right = rt;
}

}

24

Implementing Binary Trees

Figure 6-8 Implementation of a generic binary search tree
(continued)

/************************ BST.java **************************
* generic binary search tree
*/

public class BST<T extends Comparable<? super T>> {
protected BSTNode<T> root = null;
public BST() {
}
protected void visit(BSTNode<T> p) {

System.out.print(p.el + " ");
}
protected T search(T el) {…}
public void breadthFirst() {…}
public void preorder() {

preorder(root);
}
public void inorder() {

inorder(root);
}
public void postorder() {

postorder(root);
}

25

Implementing Binary Trees

Figure 6-8 Implementation of a generic binary search tree
(continued)

protected void inorder(BSTNode<T> p) {…}
protected void preorder(BSTNode<T> p) {…}
protected void postorder(BSTNode<T> p) {…}
public void deleteByCopying(T el) {…}
public void deleteByMerging(T el) {…}
public void iterativePreorder() {…}
public void iterativeInorder() {…}
public void iterativePostorder2() {…}
public void iterativePostorder() {…}
public void MorrisInorder() {…}
public void MorrisPreorder() {…}
public void MorrisPostorder() {…}
public void balance(T data[], int first, int last) {…}
public void balance(T data[]) {…}

}

26

Searching a Binary Search Tree

Figure 6-9 A function for searching a binary search tree

protected T search(T el) {
BSTNode<T> p = root;
while (p != null)

if (el.equals(p.el))
return p.el;

else if (el.compareTo(p.el) < 0)
p = p.left;

else p = p.right;
return null;

}

27

Searching a Binary Search Tree

 The internal path length (IPL) is the sum of all path
lengths of all nodes
 It is calculated by summing

Σ(i – 1)Li
over all levels i, where Li is the number of nodes on level L

 A depth of a node in the tree is determined by the path
length

 An average depth, called an average path length, is
given by the formula IPL/n, which depends on the
shape of the tree

Importance of BSTs

 BSTs provide good logarithmic time performance in the best and average
cases.

 Average case complexities of using linear data structures compared to
BSTs:

DeletionInsertionRetrievalData Structure

O(log n)
FAST

O(log n)
FAST

O(log n)
FAST

BST

O(n)
SLOW

O(n)
SLOW

O(log n)
FAST*

Sorted Array

O(n)
SLOW

O(n)
SLOW

O(n)
SLOW

Sorted Linked List

*using binary search

28

29

Tree Traversal (Definition)

 The process of systematically visiting every node once in
a tree and performing some computation at each node
in the tree is called a tree traversal.

 There are two methods in which to traverse a tree:
1. Breadth-First Traversal.
2. Depth-First Traversal:

• Preorder traversal
• Inorder traversal (for binary trees only)
• Postorder traversal

29

30

Breadth-First Traversal

Figure 6-10 Top-down, left-to-right, breadth-first traversal
implementation

public void breadthFirst() {
BSTNode<T> p = root;
Queue<BSTNode<T>> queue = new Queue<BSTNode<T>>();
if (p != null) {

queue.enqueue(p);
while (!queue.isEmpty()) {

p = queue.dequeue();
visit(p);
if (p.left != null)

queue.enqueue(p.left);
if (p.right != null)

queue.enqueue(p.right);
}

}
}

31

Breadth-First Traversal

H

D

B

A C E G I K M O

N

L

JF

OMKIGECANJFBLDH

31

32

Depth-First Traversal

 Depth-first traversal proceeds as far as possible to
the left (or right), then backs up until the first
crossroad, goes one step to the right (or left), and
again as far as possible to the left (or right)
 V — Visiting a node
 L — Traversing the left subtree
 R — Traversing the right subtree

33

Depth-First Traversals

for each Node:Name

•Visit the node
•Visit the left subtree, if any.
•Visit the right subtree, if any.

Preorder
(V-L-R)

•Visit the left subtree, if any. Visit the
node
•Visit the right subtree, if any.

Inorder
(L-V-R)

•Visit the left subtree, if any.
•Visit the right subtree, if any.
•Visit the node

Postorder
(L-R-V)

33

34

Depth-First Traversal (continued)

Figure 6-11 Depth-first traversal implementation

protected void inorder(BSTNode<T> p) {
if (p != null) {

inorder(p.left);
visit(p);
inorder(p.right);

}
}
protected void preorder(BSTNode<T> p) {

if (p != null) {
visit(p);
preorder(p.left);
preorder(p.right);

}
}
protected void postorder(BSTNode<T> p) {

if (p != null) {
postorder(p.left);
postorder(p.right);
visit(p);

}
}

35

Depth-first Preorder Traversal

OMNKIJLGEFCABDH

V-L-R

35

H

D

B

A C E G I K M O

N

L

JF

36

Depth-first Inorder Traversal

L-V-R

ONMLKJIHGFEDCBA

Note: An inorder traversal of a BST visits the keys sorted in increasing order.

36

H

D

B

A C E G I K M O

N

L

JF

37

Depth-first Postorder Traversal

H

D

B

A C E G I K M O

N

L

JF

L-R-V

HLNOMJKIDFGEBCA

37

38

Iterative Preorder Traversal

Figure 6-15 A nonrecursive implementation of preorder tree traversal

public void iterativePreorder() {
BSTNode<T> p = root;
Stack<BSTNode<T>> travStack = new Stack<BSTNode<T>>();
if (p != null) {

travStack.push(p);
while (!travStack.isEmpty()) {

p = travStack.pop();
visit(p);
if (p.right != null)

travStack.push(p.right);
if (p.left != null) // left child pushed after right

travStack.push(p.left);// to be on the top of the stack;
}

}
}

39

BST Insertion

Figure 6-22 Inserting nodes into binary search trees

40

Insertion (continued)

Figure 6-23 Implementation of the insertion algorithm

public void insert(T el) {
BSTNode<T> p = root, prev = null;
while (p != null) { // find a place for inserting new node;

prev = p;
if (el.compareTo(p.el) < 0)

p = p.left;
else p = p.right;

}
if (root == null) // tree is empty;

root = new BSTNode<T>(el);
else if (el.compareTo(prev.el) < 0)

prev.left = new BSTNode<T>(el);
else prev.right = new BSTNode<T>(el);

}

41

Deletion

 There are three cases of deleting a node from the
binary search tree:
 The node is a leaf; it has no children
 The node has one child
 The node has two children

42

Deletion (continued)

Figure 6-26 Deleting a leaf

Figure 6-27 Deleting a node with one child

43

Deletion by Merging

 Making one tree out of the two subtrees of the node
and then attaching it to the node’s parent is called
deleting by merging

Figure 6-28 Summary of deleting by merging

44

Deletion by Merging (continued)

Figure 6-29 Implementation of algorithm for deleting by merging

public void deleteByMerging(T el) {
BSTNode<T> tmp, node, p = root, prev = null;
while (p != null && !p.el.equals(el)) { // find the node p

prev = p; // with element el;
if (el.compareTo(p.el) < 0)

p = p.right;
else p = p.left;

}

45

node = p;
if (p != null && p.el.equals(el)) {

if (node.right == null) // node has no right child: its left
node = node.left; // child (if any) is attached to its parent;

else if (node.left == null) // node has no left child: its right
node = node.right; // child is attached to its parent;

else { // be ready for merging subtrees;
tmp = node.left; // 1. move left
while (tmp.right != null) // 2. and then right as far as

tmp = tmp.right; // possible;
tmp.right = // 3. establish the link between

node.right; // the rightmost node of the left
// subtree and the right subtree;

node = node.left; // 4.
}
if (p == root)

root = node;
else if (prev.left == p)

prev.left = node;
else prev.right = node; // 5.

}
else if (root != null)

System.out.println("el " + el + " is not in the tree");
else System.out.println("the tree is empty");

}

Deletion by Merging (continued)

Figure 6-29 Implementation of algorithm for deleting by merging
(continued)

46

Deletion by Merging (continued)

Figure 6-30 Details of deleting by merging

47

Deletion by Merging (continued)

Figure 6-31 The height of a tree can be (a) extended or
(b) reduced after deleting by merging

48

Deletion by Merging (continued)

Figure 6-31 The height of a tree can be (a) extended or
(b) reduced after deleting by merging (continued)

49

Deletion by Copying

 If the node has two children, the problem can be
reduced to:
 The node is a leaf
 The node has only one nonempty child

 Solution: replace the key being deleted with its
immediate predecessor (or successor)

 A key’s predecessor is the key in the rightmost node in
the left subtree

50

Deletion by Copying (continued)

Figure 6-32 Implementation of an algorithm for deleting by copying

public void deleteByCopying(T el) {
BSTNode<T> node, p = root, prev = null;
while (p != null && !p.el.equals(el)) { // find the node p

prev = p; // with element el;
if (el.compareTo(p.el) < 0)

p = p.left;
else p = p.right;

}

51

node = p;
if (p != null && p.el.equals(el)) {

if (node.right == null) // node has no right child;
node = node.left;

else if (node.left == null) // no left child for node;
node = node.right;

else {
BSTNode<T> tmp = node.left; // node has both children;
BSTNode<T> previous = node; // 1.
while (tmp.right != null) { // 2. find the rightmost

previous = tmp; // position in the
tmp = tmp.right; // left subtree of node;

}
node.el = tmp.el; // 3. overwrite the reference

// to the element being deleted;
if (previous == node) // if node's left child's

previous.left = tmp.left; // right subtree is null;
else previous.right = tmp.left; // 4.

}
if (p == root)

root = node;
else if (prev.left == p)

prev.left = node;
else prev.right = node;

}
else if (root != null)

System.out.println("el " + el + " is not in the tree");
else System.out.println("the tree is empty");

}
Figure 6-32 Implementation of an algorithm for deleting by copying

(continued)

52

Deletion by Copying (continued)

Figure 6-33 Deleting by copying

	Slide Number 1
	Reading Assignment
	Objectives
	Definition of a Tree
	Definition of a Tree (Cont.)
	Tree Terminology
	Tree Terminology (Contd.)
	Tree Terminology (Contd.)
	Tree Terminology (Contd.)
	Tree Terminology (Contd.)
	Example Trees
	Importance of Trees
	Hierarchical Structure Representation
	Orderly Trees
	Binary Trees
	Binary Trees
	Binary Trees
	Binary Trees
	Binary Search Trees
	Binary Search Tree Examples
	Implementing Binary Trees
	Implementing Binary Trees
	Implementing Binary Trees
	Implementing Binary Trees
	Implementing Binary Trees
	Searching a Binary Search Tree
	Searching a Binary Search Tree
	Importance of BSTs
	Tree Traversal (Definition)
	Breadth-First Traversal
	Breadth-First Traversal
	Depth-First Traversal
	Depth-First Traversals
	Depth-First Traversal (continued)
	Depth-first Preorder Traversal
	Depth-first Inorder Traversal
	Depth-first Postorder Traversal
	Iterative Preorder Traversal
	BST Insertion
	Insertion (continued)
	Deletion
	Deletion (continued)
	Deletion by Merging
	Deletion by Merging (continued)
	Deletion by Merging (continued)
	Deletion by Merging (continued)
	Deletion by Merging (continued)
	Deletion by Merging (continued)
	Deletion by Copying
	Deletion by Copying (continued)
	Slide Number 51
	Deletion by Copying (continued)

