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9814239233 
 Chapter 6 Sections 7, 9 and 10.

Reading Assignment



Objectives

Discuss the following topics: 
 Balancing a Tree
 Rotations
 DSW Algorithms
 AVL Trees
 Heaps
 Polish Notation and Expression Trees



Balancing a Tree

 A binary tree is height-balanced or balanced if the 
difference in height of both subtrees of any node in the 
tree is either zero or one

 A tree is considered perfectly balanced if it is 
balanced and all leaves are to be found on one level or 
two levels



Balancing a Tree

Figure 6-34 Different binary search trees with the same information



Balancing a Tree

Figure 6-35  Maximum number of nodes in binary trees of 
different heights



void balance (T data[], int first, int last) {

if (first <= last) {

int middle = (first + last)/2;

insert(data[middle]); // into the BST

balance(data,first,middle-1);

balance(data,middle+1,last);

}

}

Balancing a Tree Using an Array



Balancing a Tree (continued)

Figure 6-36 Creating a binary search tree from an ordered array



Rotations 

 A rotation is a process of switching children and parents among 
two or three adjacent nodes.

 Single right rotation:
• The left child x of a node y becomes y's parent.
• y becomes the right child of x.
• The right child T2 of x, if any, becomes the left child of y.
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Rotations
 Single left rotation:

• The right child y of a node x becomes x's parent.
• x becomes the left child of y.
• The left child T2 of y, if any, becomes the right child of x.
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BST ordering property after a rotation
 A rotation does not affect the ordering property of a BST 

(Binary  Search Tree). 
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a right rotation of x about y

BST ordering property requirement: BST ordering property requirement: 
T1 < x < y T1 < x < y
x < T2 < y Similar x < T2 < y
x < y < T3 x < y < T3

• Similarly for a left rotation.
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Single Right Rotation Implementation (example)
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Single Right Rotation Implementation (example) contd
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Single Right Rotation Implementation (example) contd
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Single Right Rotation Implementation (example) contd
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Single Right Rotation Implementation (example) contd
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Single Right Rotation Implementation (example) contd
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Single Right Rotation Implementation (example) contd
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Single Right Rotation Implementation (example) contd
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Single Right Rotation Implementation (example) contd
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Single Right Rotation Implementation (example) contd
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Algorithm DSW 
createBackbone(root, n);
createPerfectTree(n);

End Algorithm

DSW Algorithm



Algorithm createBackbone



Algorithm createBackbone

Figure 6-38 Transforming a binary search tree into a backbone



Algorithm createPerfectTree



Algorithm createPerfectTree

Figure 6-39 Transforming a backbone into a perfectly balanced tree



AVL Trees

 An AVL tree is a binary search tree with a height balance property: 
• For each node v, the heights of the subtrees of v differ by at most 1.

 A subtree of an AVL tree is also an AVL tree.
 For each node of an AVL tree:

Balance factor = height(right subtree) - height(left subtree)

 An AVL node can have a balance factor of -1, 0, or 1.
 Determine whether the trees below are AVL trees or not.
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Why AVL Trees?

 Insertion or deletion in an ordinary Binary Search Tree 
can cause large imbalances. 

 In the worst case searching an imbalanced Binary 
Search Tree is O(  )

 An AVL tree is rebalanced after each insertion or 
deletion.
• The height-balance property ensures that the height of an AVL 

tree with n nodes is O(       ).
• Searching, insertion, and deletion are all O(       ).
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Balancing an AVL Tree

 An insertion or deletion may cause an imbalance in an AVL tree.
 The deepest node, which is an ancestor of a deleted or an inserted node, 

and whose balance factor has changed to -2 or +2 requires rotation to 
rebalance the tree.

 Balance is restored using a single rotation or a double rotation
 Single right and left rotations are same as before.
 A double right-left rotation is a right rotation followed by a left rotation.
 A double left-right rotation is a left rotation followed by a right rotation.
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Double Right-Left Rotation
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Double Left-Right Rotation
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When to do Which Rotation
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Insertion

 Insert using a BST insertion algorithm.
 Rebalance the tree if an imbalance occurs.
 An imbalance occurs if a node's balance factor changes from -1 to -2 

or from+1 to +2.
 Rebalancing is done at the deepest or lowest unbalanced ancestor of 

the inserted node.

 There are three insertion cases:
1. Insertion that does not cause an imbalance.

2. Same side (left-left or right-right) insertion that causes an imbalance.
 Requires a single rotation to rebalance. 

3. Opposite side (left-right or right-left) insertion that causes an imbalance.
 Requires a double rotation to rebalance.
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Insertion: case 1

 Example: An insertion that does not cause an imbalance.

Insert 14
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Insertion: case 2 

 Case 2a: The lowest node (with a balance factor of -2) had a taller 
left-subtree and the insertion was on the left-subtree of its left child.

 Requires single right rotation to rebalance.

Insert 3

right rotation, with node 
10 as pivot

-2

-1
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Insertion: case 2 (contd)

 Case 2b: The lowest node (with a balance factor of +2) had a taller 
right-subtree and the insertion was on the right-subtree of its right 
child. 

 Requires single left rotation to rebalance.

Insert 45
left rotation, with node 30 
as the pivot

+2

+1
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Insertion: case 3

 Case 3a: The lowest node (with a balance factor of -2) had a taller 
left-subtree and the insertion was on the right-subtree of its left child.

 Requires a double left-right rotation to rebalance.

Insert 7

left rotation, with node 5 
as the pivot

right rotation, with node 10 
as the pivot

-2

+1
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Insertion: case 3 (contd)

 Case 3b: The lowest node (with a balance factor of +2) had a taller 
right-subtree and the insertion was on the left-subtree of its right 
child.

 Requires a double right-left rotation to rebalance.

Insert 15

right rotation, with node 16 
as the pivot

left rotation, with node 9 
as the pivot

+2

-1
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Deletion

 Delete by a BST deletion by copying algorithm.
 Rebalance the tree if an imbalance occurs.
 There are three deletion cases:

1. Deletion that does not cause an imbalance.
2. Deletion that requires a single rotation to rebalance.
3. Deletion that requires two or more rotations to rebalance.

 Deletion case 1 example:

Delete 14
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Deletion: case 2 examples

Delete 40
right rotation, with node 35 
as the pivot
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Deletion: case 2 examples (contd)

Delete 32
left rotation, with node 44 
as the pivot
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Deletion: case 3 examples

Delete 40

0

right rotation, with node 35 
as the pivot

right rotation, with 
node 30 as the pivot
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Binary Heaps

 What is a Binary Heap? 

 Array representation of a Binary Heap

 MinHeap implementation

 Operations on Binary Heaps:
enqueue
dequeue
deleting an arbitrary key
changing the priority of a key

 Building a binary heap
• top down approach
• bottom up approach

 Heap as a priority queue
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What is a Binary Heap
 A particular kind of binary tree, called a heap, has two 

properties:
 The value of each node is greater than or 

equal to the values stored in each of its children
 The tree is perfectly balanced, and the leaves in the last level 

are all in the leftmost positions
 These two properties define a max heap 
 If “greater” in the first property is replaced with “less,” 

then the definition specifies a min heap
All levels except the bottom one 
must be fully populated with nodes

All missing nodes, if any, must be 
on the right side of the lowest level



MinHeap and non-MinHeap examples
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MinHeap and non-MinHeap examples
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MaxHeap and non-MaxHeap examples
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MaxHeap and non-MaxHeap examples
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Array Representation of a Binary Heap

 A heap is a dynamic data structure that is represented and 
manipulated more efficiently using an array.

 Since a heap is a complete binary tree, its node values can be 
stored in an array, without any gaps, in a breadth-first order, 
where:

Value(node i+1) array[ i ],  for i > 0

21

24

65 26 32

31 19

16

68

13

32266568193124162113
9876543210

• The root is array[0]
• The parent of array[i] is array[(i – 1)/2], where i > 0
• The left child, if any, of array[i] is array[2i+1].
• The right child, if any, of array[i] is array[2i+2]. 
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Array Representation of a Binary Heap (contd.)

 We shall use an implementation in which the heap 
elements are stored in an array starting at index 1.

Value(node i ) array[i]  ,  for i > 1
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24

65 26 32

31 19

16

68

13

32266568193124162113
9876543210 10

• The root is array[1].
• The parent of array[i] is array[i/2], where i > 1
• The left child, if any, of array[i] is array[2i].
• The right child, if any, of array[i] is array[2i+1]. 
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Percolate Up
 In a MinHeap, if the key at a node, other than the root, becomes 

less than its parent, the heap property can be restored by 
swapping the current node and its parent, repeating this process 
for the parent if necessary, until 
 the key at the node is greater than or equal to that of the parent.
 we reach the root.

Procedure percolateUp
Input:  H[1..n], i where 1 ≤ i ≤ n.
Output: H, where no node is less than its parent on the path from 
node i to the root.
done = false;
while (!done && (i != 1)) {

if H[i].key < H[i/2].key
swap(H[i],H[i/2]);

else
done = true;

i := i/2;
}

What is the complexity of 
percolateUp?
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Percolate Down

 In a MinHeap, if the value at a node becomes greater than the key 
of any of its children, the heap property can be restored by 
swapping the current node and the child with minimum key value, 
repeating this process if necessary until 
 the key at the node is less than or equal to the keys of both children.
 we reach a leaf.

Procedure percolateDown 
Input:  H[1..n], i where 1 ≤ i ≤ n.
Output: H[i] is percolated down, if needed, so that it’s not 

greater than its children.
done = false;
while ( (2*i <= n) && !done) {

i = 2*i;
if ((i+1 ≤ n) and (H[i+1].key < H[i].key))   i = i+1;
if (H[i/2].key > H[i].key)

swap(H[i],H[i/2]);
else

done := true;
}

What is the complexity of 
percolateDown?
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MinHeap enqueue

 The pseudo code algorithm for enqueing a key in a 
MinHeap is:

Algorithm enqueue
Input: A heap H[1..n] & a heap element x.
Output: A new heap H[1..n+1] with x 

being one of its elements.
1. if (Heap is full) throw an exception;  
2. n = n + 1;
3. H[n] = x;
4. percolateUp(H, n);

 Thus, the steps for enqueue are:
1. Enqueue the key at the end of the heap.
2. As long as the heap order property is violated, percolate up.

What is the complexity of 
enqueue method?
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MinHeap Insertion Example
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Deleting an Arbitrary Key

Algorithm Delete
Input: A nonempty heap H[1..n] and i where 

1 ≤ i ≤ n.
Output: H[1..n-1] after H[i] is removed.

1. if (Heap is empty) throw an exception
2. x = H[i]; y = H[n];
3. n := n – 1;
4. if i == n+1 then return; // deleting last node 
5. H[i] = y;
6. if y.key <= x.key then 
7.   percolateUp(H, i);
8. else percolateDown(H, i);

• What about dequeueMin()?

What is the complexity of 
Delete method?

55



Example
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• Delete 68
• Delete 13
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Changing the priority of a key

There are three possibilities when the priority of a key x is changed:
1. The heap property is not violated.
2. The heap property is violated and x has to be percolated up to restore the heap property.
3. The heap property is violated and x has to be percolated down to restore the heap property.
Example:
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Building a heap (top down) 

 A heap is built top-down by inserting one key at a time in an initially empty heap. 
 After each key insertion, if the heap property is violated, it is restored by percolating 

the inserted key upward.

The algorithm is:

for(int i=1; i <= heapSize; i++){ 
read  key;  
binaryHeap.enqueue(key);

}

Example: Insert the keys 4, 6, 10, 20, and 8 in this order in an originally empty max-heap

What is the complexity of 
BuildHeap top-down?
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Example: Insert the keys 4, 6, 10, 20, and 8 in this order in an 
originally empty max-heap

Building a heap (top down) 
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Converting an array into a Binary heap 
(Building a heap bottom-up) 

 Robert Floyd developed an algorithm to convert an array into a 
binary heap as follows: 

1. Start at the level containing the last non-leaf node (i.e., array[n/2], 
where n is the array size).

2. Make the subtree rooted at the last non-leaf node into a heap by 
invoking percolateDown. 

3. Move in the current level from right to left, making each subtree, 
rooted at each encountered node, into a heap by invoking percolateDown. 

4. If the levels are not finished, move to a lower level then go to step 3.

 The above algorithm can be refined to the following method of the 
BinaryHeap class: 

 BuildHeapBottomUp runs in O(n) time.

private void buildHeapBottomUp()
{
for(int i = count / 2; i >= 1; i--)

percolateDown(i);
}
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Converting an array into a MinHeap (Example)
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Heap Applications: Priority Queue

 A heap can be used as the underlying implementation of a priority queue.
 A priority queue is a data structure in which the items to be inserted have 

associated priorities.
 Items are withdrawn from a priority queue in order of their priorities, 

starting with the highest priority item first.
 Priority queues are often used in resource management, simulations, and 

in the implementation of some algorithms (e.g., some graph algorithms, 
some backtracking algorithms).

 Several data structures can be used to implement priority queues. Below 
is a comparison of some:

Dequeue MaxFind MaxEnqueueData structure

O(n)O(n)O(1)Unsorted List

O(1)O(1)O(n)Sorted List

O(log n)O(log n)O(log n)AVL Tree

O(log n)O(1)O(log n)MaxHeap
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Polish Notation and Expression Trees

 Polish notation is a special notation for propositional 
logic that eliminates all parentheses from formulas

 The compiler rejects everything that is not essential to 
retrieve the proper meaning of formulas rejecting it as 
“syntactic sugar”



Polish Notation and Expression Trees

Figure 6-59 Examples of three expression trees and results 
of their traversals



Operations on Expression Trees

Figure 6-60 An expression tree



Operations on Expression Trees

Figure 6-61 Tree transformations for differentiation of 
multiplication and division



Summary

 A tree is a data type that consists of nodes and arcs.
 The root is a node that has no parent; it can have only 

child nodes.
 Each node has to be reachable from the root through a 

unique sequence of arcs, called a path.
 An orderly tree is where all elements are stored 

according to some predetermined criterion of ordering.



Summary (continued)

 A binary tree is a tree whose nodes have two children 
(possibly empty), and each child is designated as either 
a left child or a right child.

 A decision tree is a binary tree in which all nodes have 
either zero or two nonempty children.

 Tree traversal is the process of visiting each node in the 
tree exactly one time.



Summary (continued)

 An AVL tree is one in which the height of the left and 
right subtrees of every node differ by at most one.

 Polish notation is a special notation for propositional 
logic that eliminates all parentheses from formulas.
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