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Object-Oriented Concepts supported by JAVA

 Java provides explicit support for many of the fundamental Object-
Oriented Concepts.  Some of these are:
 Classification:  Grouping related things together.  This is 

supported through classes, inheritance & packages.
 Encapsulation:  Representing data and the set of operations 

on the data as a single entity - exactly what classes do. 
 Information Hiding:  An object should be in full control of its 

data, granting specific access only to whom it wishes. 
 Inheritance: Java allows related classes to be organized in a 

hierarchical manner using the extends keyword.
 Polymorphism: Same code behaves differently at different  

times during execution. This is due to dynamic binding. 
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Advantages of Object-Orientation.

 A number of advantages can be derived as a result of these 
object-oriented features.  Some of these are:
 Reusability:  Rather than endlessly rewriting the same 

piece of code, we write it once and use it or inherit it as 
needed.

 Extensibility:  A class can be extended without affecting 
its users provided that the user-interface remains the same.

 Maintainability: Again, once the user-interface does not 
change, the implementation can be changed at will.

 Security: Thanks to information hiding, a user can only 
access the information he has been allowed to access.

 Abstraction: Classification and Encapsulation allow 
portrayal of real-world problems in a simplified model. 
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Review of inheritance

 Suppose we have the following Employee class:

class Employee  {
protected String name;
protected double payRate;
public Employee(String name, double payRate)  {

this.name = name;
this.payRate = payRate; 

}
public String getName()  {return name;}
public void setPayRate(double newRate)  {

payRate = newRate;
}
public double pay()  {return payRate;}
public void print()  {

System.out.println("Name: " + name);
System.out.println("Pay Rate: "+payRate);

}
}
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Review of inheritance (contd.)
 Now, suppose we wish to define another class to 

represent a part-time employee whose salary is paid per 
hour.  We inherit from the Employee class as follows:

class HourlyEmployee extends Employee  {
private int hours;
public HourlyEmployee(String hName, double hRate)  {

super(hName, hRate);
hours = 0;

}
public void addHours(int moreHours)  {hours += moreHours;}
public double pay()  {return payRate * hours;}
public void print()  {

super.print();
System.out.println("Current hours: " + hours);

}
}
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Notes about Inheritance

 We observe the following from the examples on inheritance: 
• Methods and instance variables of the super class are inherited by 

subclasses, thus allowing for code reuse.
• A subclass can define additional instance variables (e.g. hours) 

and additional methods (e.g. addHours).
• A subclass can override some of the methods of the super class to 

make them behave differently (e.g. the pay & print)
• Constructors are not inherited, but can be called using the super 

keyword.  such a call must be the first statement.
 If the constructor of the super class is not called, then the complier 

inserts a call to the default constructor -watch out!

• super may also be used to call a method of the super class.
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Review of Abstract Classes

 Inheritance enforces hierarchical organization, the benefits of 
which are: reusability, type sharing and polymorphism.

 Java uses Abstract classes & Interfaces to further strengthen 
the idea of inheritance.

 To see the role of abstract of classes, suppose that the pay
method is not implemented in the HourlyEmployee subclass.
 Obviously, the pay method in the Employee class will be assumed, which 

will lead to wrong result.
 One solution is to remove the pay method out and put it in another 

extension of the Employee class, MonthlyEmployee.
 The problem with this solution is that it does not force  subclasses of 

Employee class to implement the pay method.

8



Review of Abstract Classes (Cont'd)

 The solution is to declare the pay method of the Employee class as 
abstract, thus, making the class abstract.

abstract class Employee  {
protected String name;
protected double payRate;
public Employee(String empName, double empRate)  {

name = empName;
payRate = empRate;

}
public String getName()  {return name;}  
public void setPayRate(double newRate)  {payRate = newRate;}

abstract public double pay();

public void print()  {
System.out.println("Name: " + name);
System.out.println("Pay Rate: "+payRate);

}
}
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Review of Abstract Classes (Cont'd)

 The following extends the Employee abstract class to get 
MonthlyEmployee class.

 The next example extends the MonthlyEmployee class to get  
the Executive class.

class MonthlyEmployee extends Employee  {
public MonthlyEmployee(String empName, double empRate) {

super(empName, empRate);
}
public double pay()  {

return payRate;
}

}
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Review of Abstract Classes (Cont'd)

class Executive extends MonthlyEmployee  {
private double bonus;
public Executive(String exName, double exRate)  {

super(exName, exRate);
bonus = 0;

}
public void awardBonus(double amount)  {

bonus = amount;
}
public double pay()  {

double paycheck = super.pay() + bonus;
bonus = 0;
return paycheck;

}
public void print()  {

super.print();
System.out.println("Current bonus: " + bonus);

}
}

Employee 

HourlyEmployee

MonthlyEmployee Executive
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public class TestAbstractClass  {
public static void main(String[] args)  {

Employee[] list = new Employee[3];
list[0] = new Executive("Jarallah Al-Ghamdi", 50000);
list[1] = new HourlyEmployee("Azmat Ansari", 120);
list[2] = new MonthlyEmployee("Sahalu Junaidu", 9000);
((Executive)list[0]).awardBonus(11000);

for(int i = 0; i < list.length; i++)
if(list[i] instanceof HourlyEmployee)

((HourlyEmployee)list[i]).addHours(60);
for(int i = 0; i < list.length; i++)  { 

list[i].print();
System.out.println("Paid: " + list[i].pay());
System.out.println("*************************");

}   
}     

} 

Review of Abstract Classes (Cont'd)
 The following further illustrates the advantages of organizing 

classes using inheritance - same type, polymorphism, etc.
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Review of Interfaces

 Interfaces are not classes, they are entirely a separate entity. 
 They provide a list of abstract methods which MUST be 

implemented by a class that implements the interface.
 Unlike abstract classes which may contain implementation of 

some of the methods, interfaces provide NO implementation.
 Like abstract classes, the purpose of interfaces is to provide 

organizational structure. 
 More importantly, interfaces are here to provide a kind of 

"multiple inheritance" which is not supported in Java.
 If both parents of a child implement a method, which one does the child 

inherits? - Multiple inheritance confusion.
 Interfaces allow a child to be both of type A and B. 
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Review of Interfaces (contd.)

 Recall that Java has the Comparable interface defined as:

 Recall also that java has the java.util.Arrays class, which has a 
sort method that can sort any array whose contents are either 
primitive values or Comparable objects.

 Thus, to sort our list of Employee objects, all we need is to 
modify the Employee class to implement the Comparable 
interface.

 Notice that this will work even if the Employee class is 
extending another class or implementing another interface.

 This modification is shown in the next page.

interface Comparable {
int compareTo(Object o);

}
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Review of Interfaces (contd.)
abstract class Employee implements Comparable  {

protected String name;
protected double payRate;
public Employee(String empName, double empRate)  {

name = empName;
payRate = empRate;

}
public String getName()  {return name;}
public void setPayRate(double newRate)  {

payRate = newRate;
} 
abstract public double pay();
public int compareTo(Object o)  {

Employee e = (Employee) o;
return name.compareTo( e.getName());

}
}

Employee 

HourlyEmployee

MonthlyEmployee ExecutiveComparable
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import java.util.Arrays;
public class TestInterface  {

public static void main(String[] args)  {
Employee[] list = new Employee[3];
list[0] = new Executive("Jarallah Al-Ghamdi", 50000);
list[1] = new HourlyEmployee("Azmat Ansari", 120);
list[2] = new MonthlyEmployee("Sahalu Junaidu", 9000);
((Executive)list[0]).awardBonus(11000);
for(int i = 0; i < list.length; i++) 

if(list[i] instanceof HourlyEmployee) 
((HourlyEmployee)list[i]).addHours(60);

Arrays.sort(list);
for(int i = 0; i < list.length; i++)  {

list[i].print();
System.out.println("Paid: " + list[i].pay());
System.out.println("**********************");

}
}

}

Review of Interfaces (contd.)
 Since Employee class implements the Comparable interface, the array of 

employees can now be sorted as shown below:

The program output
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Review Questions

 How does an interface differ from an abstract class?
 Why does Java not support multiple inheritance?  What feature 

of Java helps realize the benefits of multiple inheritance?
 An Abstract class must contain at least one abstract method, 

(true or false)?
 The number of objects of a subclass is typically larger than its 

super class, (true or false)? 
 A subclass typically encapsulates less functionality than its 

super class does, (true or false)?
 An instance of a class can be assigned to a variable of type  

any of the interfaces the class implements, (true or false)? 
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