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Information & Computer Science Department



 “Data Structures and Algorithms in Java”, 3rd Edition, 
Adam Drozdek, Cengage Learning, ISBN 978-
9814239233 
 Chapter 3 (Sections 1 – 3)
 Sections 3.4-3.9 are not included.

Reading Assignment



Discuss the following topics: 
 Singly Linked Lists
 Doubly Linked Lists
 Circular Lists

Objectives
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 A linked structure is a collection of nodes storing data 
and links to other nodes

 A linked list is a data structure composed of nodes, 
each node holding some information and a reference to 
another node in the list

 A singly linked list is a node that has a link only to its 
successor in this sequence

Singly Linked Lists
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Singly Linked Lists (continued)
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Figure 3-1 A singly linked list



Singly Linked Lists (continued)
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Figure 3-1 A singly linked list (continued)



//***********  SLLNode.java  *****************
// node in a generic singly linked list class

public class SLLNode<T> {
public T info;
public SLLNode<T> next;
public SLLNode() {

this(null,null);
}
public SLLNode(T el) {

this(el, null);
}
public SLLNode(T el, SLLNode<T> ptr) {

info = el; next = ptr;
}

}

A Node in a Singly Linked List
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A List in a Singly Linked List
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//****************  SLL.java  *******************
//  a generic singly linked list class 

public class SLL<T> {
protected SLLNode<T> head, tail;
public SLL() {

head = tail = null;
}
public boolean isEmpty() {

return head == null;
}



Singly Linked List Visualization
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Figure 3-3 A singly linked list of integers



In the worst case, this operation is in O(    ). 

Insertion into Singly Linked Lists
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Figure 3-4 Inserting a new node at the beginning of a singly linked list



Insertion into Singly Linked Lists (cont.)
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Figure 3-5 Inserting a new node at the end of a singly linked list

In the worst case, this operation is in O(    ). 



Insertion into Singly Linked Lists (cont.)
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public void addToHead(T el) {
head = new SLLNode<T>(el,head);
if (tail == null)

tail = head;
}

public void addToTail(T el) {
if (!isEmpty()) {

tail.next = new SLLNode<T>(el);
tail = tail.next;

}
else head = tail = new SLLNode<T>(el);

}



Deletion from Singly Linked Lists
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Figure 3-6 Deleting a node from the beginning of a singly linked list

In the worst case, this operation is in O(    ). 



Deletion from Singly Linked Lists (cont.)
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Figure 3-7 Deleting a node from the end of a singly linked list

In the worst case, this operation is in O(    ). 



Deletion from Singly Linked Lists (cont.)
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public T deleteFromHead() { // delete head and return its  
// info; 

if (isEmpty()) 
return null;

T el = head.info;
if (head == tail)    // if only one node on the list;

head = tail = null;
else head = head.next;
return el;

}



Deletion from Singly Linked Lists (cont.)
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public T deleteFromTail() { // delete tail, return its info;
if (isEmpty()) 

return null;
T el = tail.info;
if (head == tail)      // if only one node in list;

head = tail = null;
else {                 // if more than one node in list,

SLLNode<T> tmp;   // find predecessor of tail;
for (tmp = head; tmp.next != tail; tmp = tmp.next);
tail = tmp;       // predecessor of tail becomes tail;
tail.next = null;

}
return el;

}



Deletion from Singly Linked Lists (cont.)
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public void delete(T el) {  // delete the node with element el;
if (!isEmpty())

if (head == tail && el.equals(head.info)) // if only one
head = tail = null;       // node on the list;

else if (el.equals(head.info)) // if > one node on list;
head = head.next;   // and el is in the head node;

else {                   // if more than one node in list
SLLNode<T> pred, tmp;// and el is in a nonhead node;
for (pred = head, tmp = head.next;  

tmp != null && !tmp.info.equals(el); 
pred = pred.next, tmp = tmp.next);

if (tmp != null) {   // if el was found;
pred.next = tmp.next;
if (tmp == tail) // if el is in the last node;

tail = pred;
}

}
}



Printing a Singly Linked List and 
Checking an Element in a List
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public void printAll() {
for (SLLNode<T> tmp = head; tmp != null; tmp = tmp.next)

System.out.print(tmp.info + " ");                
}
public boolean isInList(T el) {

SLLNode<T> tmp;
for (tmp = head; tmp != null && !tmp.info.equals(el); 

tmp = tmp.next);
return tmp != null;

}
}



 A doubly linked list is when each node in a linked list 
has two reference fields, one to the successor and one 
to the predecessor

Doubly Linked Lists
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Figure 3-9 A doubly linked list



A Doubly Linked List Node
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//******************  DLLNode.java  *********************
//        node of generic doubly linked list class

public class DLLNode<T> {
public T info;
public DLLNode<T> next, prev;
public DLLNode() {

next = null; prev = null;
}
public DLLNode(T el) {

info = el; next = null; prev = null;
}
public DLLNode(T el, DLLNode<T> n, DLLNode<T> p) {

info = el; next = n; prev = p; 
}

}



A Doubly Linked List
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//******************  DLL.java  *********************
//        generic doubly linked list class

public class DLL<T> {
private DLLNode<T> head, tail;
public DLL() {

head = tail = null;
}
public boolean isEmpty() {

return head == null;
}
public void setToNull() {

head = tail = null;
}



Insertion into Doubly Linked Lists
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Figure 3-11 Adding a new node at the end of a doubly linked list



In the worst case, this operation is in O(   )

Insertion into Doubly Linked Lists (cont.)
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Figure 3-11 Adding a new node at the end of a doubly linked list
(continued)



Insertion into Doubly Linked Lists (cont.)
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public void addToTail(T el) {
if (tail != null) {

tail = new DLLNode<T>(el,null,tail);
tail.prev.next = tail;

}
else head = tail = new DLLNode<T>(el);

}



Deletion from Doubly Linked Lists
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Figure 3-12 Deleting a node from the end of a doubly linked list



Deletion from Doubly Linked Lists (cont.)
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public T deleteFromTail() {
if (isEmpty()) 

return null;
T el = tail.info;
if (head == tail)   // if only one node on the list;

head = tail = null;
else {              // if more than one node in list;

tail = tail.prev;
tail.next = null;

}
return el;

}



 A circular list is when nodes form a ring: The list is 
finite and each node has a successor

Circular Lists
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Figure 3-13 A circular singly linked list



Circular Lists (continued)
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Figure 3-14  Inserting nodes at the front of a circular singly linked 
list (a) and at its end (b)



Circular Lists (continued)
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Figure 3-15 A circular doubly linked list
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Summary

 A linked structure is a collection of nodes storing data 
and links to other nodes.

 A linked list is a data structure composed of nodes, 
each node holding some information and a reference to 
another node in the list.

 A node in a singly linked list has a link only to its 
successor in this sequence. 

 A node in a doubly linked list has links to its successor 
and predecessor in this sequence. 

 A circular list is when nodes form a ring: The list is finite 
and each node has a successor.

 The advantage of arrays over linked lists is that they 
allow random accessing.
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