
Unit 9

Multi-Way Trees

King Fahd University of Petroleum & Minerals
College of Computer Science & Engineering

Information & Computer Science Department

 “Data Structures and Algorithms in Java”, 3rd Edition,
Adam Drozdek, Cengage Learning, ISBN 978-9814239233
 Chapter 7 Section 7.1 (7.1.1 and 7.1.3 only)

Reading Assignment

Objectives

Discuss the following topics:
 Multi-Way Trees
 B-Trees
 B+-Trees

NOTE: SOME EXAMPLES IN THIS UNIT ARE ADOPTED FROM INTERNET SOURCES

Motivation for studying Multi-Way Trees

 Data is stored on disk (i.e., secondary memory) in blocks.
 A block is the smallest amount of data that can be accessed on a

disk.
 Each block has a fixed number of bytes – typically 512, 1024,

2048, 4096 or 8192 bytes
 Each block may hold many data records.

4

Motivation for studying Multi-Way Trees

 A disk access is very expensive compared to a typical
computer instruction (mechanical limitations) - One disk
access is worth about 200,000 instructions.

 Thus, When data is too large to fit in main memory the
number of disk accesses becomes important.

 Many algorithms and data structures that are efficient for
manipulating data in primary memory are not efficient for
manipulating large data in secondary memory because
they do not minimize the number of disk accesses.

 For example, AVL trees are not suitable for representing
huge tables residing in secondary memory.

 The height of an AVL tree increases, and hence the
number of disk accesses required to access a particular
record increases, as the number of records increases.

5

What is a Multi-way tree?

 A multi-way (or m-way) search tree of order m is a tree in which
 Each node has at-most m subtrees, where the subtrees may be

empty.
 Each node consists of at least 1 and at most m-1 distinct keys
 The keys in each node are sorted.

• The keys and subtrees of a non-leaf node are ordered as:
T0, k1, T1, k2, T2, . . . , km-1, Tm-1 such that:

– All keys in subtree T0 are less than k1.
– All keys in subtree Ti , 1 <= i <= m - 2, are greater than ki but

less than ki+1.
– All keys in subtree Tm-1 are greater than km-1

km-2
. . .k3k2k1

T0 T1 T2 Tm-2 Tm-1
key < k1 k1 < key < k2 k2 < key < k3 km-2 < key < km-1 key > km-1

km-1

6

The node structure of a Multi-way tree

 Note:
 Corresponding to each key there is a data reference that refers

to the data record for that key in secondary memory.
 In our representations we will omit the data references.
 The literature contains other node representations that we will

not discuss.

7

Examples of Multi-way Trees

 Note: In a multiway tree:
 The leaf nodes need not be at the same level.
 A non-leaf node with n keys may contain less than n + 1 non-

empty subtrees.

8

B-Trees

 What is a B-tree?

 Why B-trees?

 Searching a B-tree

 Insertion in a B-tree

 Deletion in a B-tree

9

What is a B-Tree?

 A B-tree of order m (or branching factor m), where m > 2,
is either an empty tree or a multiway search tree with the
following properties:
 The root is either a leaf or it has at least two non-empty

subtrees and at most m non-empty subtrees.
 Each non-leaf node, other than the root, has at least

m/2 non-empty subtrees and at most m non-empty
subtrees. (Note: x is the lowest integer >= x).

 The number of keys in each non-leaf node is one less
than the number of non-empty subtrees for that node.

 All leaf nodes are at the same level; that is the tree is
perfectly balanced.

10

What is a B-tree? (cont’d)

For a non-empty B-tree of order m:

These will be zero if the node is a leaf as well

This may be zero, if the node is a leaf as well

11

B-Tree Examples

Example: A B-tree of order 4

Example: A B-tree of order 5

Note:
• The data references are not shown.
• The leaf references are to empty subtrees
• The representation of example2 is a simplification in which unused key

positions are not shown

12

More on Why B-Trees

 B-trees are suitable for representing huge tables residing
in secondary memory because:
1. With a large branching factor m, the height of a B-tree is low

resulting in fewer disk accesses.
Note: As m increases the amount of computation at each node
increases; however this cost is negligible compared to hard-drive
accesses.

2. The branching factor can be chosen such that a node
corresponds to a block of secondary memory.

3. The most common data structure used for database indices is
the B-tree. An index is any data structure that takes as input a
property (e.g. a value for a specific field), called the search key,
and quick ly finds all records with that property.

13

Comparing B-Trees with AVL Trees

 The height h of a B-tree of order m, with a total of n keys,
satisfies the inequality h <= 1 + log m / 2 ((n + 1) / 2)
 If m = 300 and n = 16,000,000 then h ≈ 4.
 Thus, in the worst case finding a key in such a B-tree requires 3 disk

accesses (assuming the root node is always in main memory).

 The average number of comparisons for an AVL tree with n
keys is log n + 0.25 where n is large.
 If n = 16,000,000 the average number of comparisons is 24.
 Thus, in the average case, finding a key in such an AVL tree requires

24 disk accesses.

14

Searching a B-Tree
15

 Searching for KEY:
 Start from the root

 If root or an internal node is reached:
Search KEY among the keys in that node

– linear search or binary search
– If found, return the corresponding record

If KEY < smallest key, follow the leftmost child reference down
If KEY > largest key, follow the rightmost child reference down
If Ki < KEY < Kj, follow the child reference between Ki and Kj

 If a leaf is reached:
Search KEY among the keys stored in that leaf

– linear search or binary search
If found, return the corresponding record; otherwise report not

found

Insertion in B-Trees

 OVERFLOW CONDITION:
A root-node or a non-root node of a B-tree of order m overflows if,
after a key insertion, it contains m keys.

 Insertion algorithm:

If a node overflows, split it into two, propagate the "middle" key to
the parent of the node. If the parent overflows the process
propagates upward. If the node has no parent, create a new root
node.

 Note: Insertion of a key always starts at a leaf node.

16

Insertion in B-Trees

 Insertion in a B-tree of odd order

 Example: Insert the keys 78, 52, 81, 40, 33, 90, 85, 20, and 38 in this order in
an initially empty B-tree of order 3

17

Insertion in B-Trees

 Insertion in a B-tree of even order
At each node the insertion can be done in two different ways:
 right-bias: The node is split such that its right subtree has more keys than the left

subtree.
 left-bias: The node is split such that its left subtree has more keys than the right

subtree.

 Example: Insert the key 5 in the following B-tree of order 4:

18

B-Tree Insertion Algorithm

insertKey (x){
if(the key x is in the tree)

throw an appropriate exception;

let the insertion leaf-node be the currentNode;
insert x in its proper location within the node;

if(the currentNode does not overflow)
return;

done = false;
do{

if (m is odd) {
split currentNode into two siblings such that the right sibling rs has m/2 right-most keys,
and the left sibling ls has m/2 left-most keys;
Let w be the middle key of the splinted node;

}
else { // m is even

split currentNode into two siblings by any of the following methods:
 right-bias: the right sibling rs has m/2 right-most keys, and the left sibling ls has (m-1)/2 left-most keys.
 left-bias: the right sibling rs has (m-1)/2 right-most keys, and the left sibling ls has m/2 left-most keys.

let w be the “middle” key of the splinted node;
}

if (the currentNode is not the root node) {
insert w in its proper location in the parent p of the currentNode;

if (p does not overflow)
done = true;

else
let p be the currentNode;

}
} while (! done && currentNode is not the root node);

19

B-Tree Insertion Algorithm - Contd

if (! done) {
create a new root node with w as its only key;
let the right sibling rs be the right child of the new root;
let the left sibling ls be the left child of the new root;

}
return;

}

20

Deletion in B-Tree

 Like insertion, deletion must be on a leaf node. If the key to be deleted is not in a
leaf, swap it with either its successor or predecessor (each will be in a leaf).

 The successor of a key k is the smallest key greater than k.
 The predecessor of a key k is the largest key smaller than k.
 IN A B-TREE THE SUCCESSOR AND PREDECESSOR, IF ANY, OF ANY KEY IS IN A LEAF NODE

successorpredecessorkey

251720

322530

403234

534550

645560

756870

887578

Example: Consider the
following B-tree of order 3:

21

Deletion in B-Tree

 UNDERFLOW CONDITION
 A non-root node of a B-tree of order m underflows if,

after a key deletion, it contains m / 2 - 2 keys

 The root node does not underflow. If it contains only
one key and this key is deleted, the tree becomes
empty.

22

Deletion in B-Tree

 Deletion algorithm:
If a node underflows, rotate the appropriate key from the adjacent
right- or left-sibling if the sibling contains at least m / 2 keys;
otherwise perform a merging.

⇒ A key rotation must always be attempted before a merging

 There are five deletion cases:
1. The leaf does not underflow.
2. The leaf underflows and the adjacent right sibling has at least m / 2  keys.

perform a left key-rotation
3. The leaf underflows and the adjacent left sibling has at least m / 2  keys.

perform a right key-rotation
4. The leaf underflows and each of the adjacent right sibling and the adjacent left sibling

has at least m / 2  keys.
perform either a left or a right key-rotation

5. The leaf underflows and each adjacent sibling has m / 2 - 1 keys.
perform a merging

23

Deletion in B-Tree

Case1: The leaf does not underflow.

Delete 140

B-tree of order 4
Example:

24

Deletion in B-Tree (cont’d)

Case2: The leaf underflows and the adjacent right sibling has at least
m / 2  keys.

Delete 113

B-tree of order 5

Perform a left key-rotation:
1. Move the parent key x that separates the siblings to the node with underflow
2. Move y, the minimum key in the right sibling, to where the key x was
3. Make the old left subtree of y to be the new right subtree of x.

Example:

25

Deletion in B-Tree (cont’d)

Case 3: The leaf underflows and the adjacent left sibling has at least
m / 2 keys.

Delete 135

B-tree of order 5

Perform a right key-rotation:
1. Move the parent key x that separates the siblings to the node with underflow
2. Move w, the maximum key in the left sibling, to where the key x was
3. Make the old right subtree of w to be the new left subtree of x

Example:

26

Deletion in B-Trees (cont’d)

Case 4: The leaf underflows and each of the adjacent right
sibling and the adjacent left sibling has at least m / 2 
keys.

27

Delete 135

B-tree of order 5Example:

right rotation left rotation

Deletion in B-Tree (cont’d)

Case 5:The leaf underflows and each adjacent sibling has m / 2 - 1 keys.

merge node, sibling and the
separating key x

If the parent of the merged node underflows, the merging process propagates
upward. In the limit, a root with one key is deleted and the height decreases
by one.

28

29

Deletion in B-Trees (cont’d)

merge node, left sibling and the
separating key v

Note: The merging could also be done by using the left sibling instead of the right
sibling.

Deletion in B-Tree (cont’d)

Delete 412

The parent of the merged node does not underflow. The merging process
does not propagate upward.

B-tree of order 5Example:

30

Deletion in B-Tree (cont’d)

Delete D

B-tree of order 5

Example:

31

Example involving a rotation and
merging

32

merge 15 and 20

Delete the key 40 in the following B-tree of order 3:

rotate 8 and its right subtree

Example:

B-Tree Deletion Algorithm

deleteKey (x) {
if (the key x to be deleted is not in the tree)

throw an appropriate exception;
if (the tree has only one node) {

delete x ;
return;

}
if (the key x is not in a leaf node)

swap x with its successor or predecessor; // each will be in a leaf node
delete x from the leaf node;
if(the leaf node does not underflow) // after deletion numKeys ≥ m / 2 - 1

return;
let the leaf node be the CurrentNode;
done = false;

33

B-Tree Deletion Algorithm
while (! done && numKeys(CurrentNode) < m / 2 - 1) { // there is underflow

if (any of the adjacent siblings t of the CurrentNode has at least m / 2 keys) { // ROTATION CASE
if (t is the adjacent right sibling) {

rotate the separating-parent key w of CurrentNode and t to CurrentNode;
rotate the minimum key of t to the previous parent-location of w;
rotate the left subtree of t, if any, to become the right-most subtree of CurrentNode;

}
else { // t is the adjacent left sibling

rotate the separating-parent key w between CurrentNode and t to CurrentNode;
rotate the maximum key of t to the previous parent-location of w;
rotate the right subtree of t , if any, to become the left-most subtree of CurrentNode;

}
done = true;

}
else { // MERGING CASE: the adjacent or each adjacent sibling has m / 2 - 1 keys

select any adjacent sibling t of CurrentNode;
create a new sibling by merging currentNode, the sibling t, and their parent-separating key ;
If (parent node p is the root node) {
if (p is empty after the merging)

make the merged node the new root;
done = true;

} else
let parent p be the CurrentNode;
}

} // while
return;

}

34

B+-Trees

 What is a B+ tree?

 Why B+ trees?

 Searching a B+ tree

 Insertion in a B+ tree

 Deletion in a B+ tree.

35

What is a B+ tree?

 A B+-tree of order M ≥ 3 is an M-ary tree with the
following properties:
 Leaves contain data items or references to data items

all are at the same depth
each leaf has L/2 to L data or data references (L may be equal to,

less or greater than M; but usually L << M)
 Internal nodes contain searching keys

The keys in each node are sorted in increasing order
each node has at least M/2 and at most M subtrees
The number of search keys in each node is one less than the number

of subtrees
– key i in an internal node is the smallest key in subtree i+1

 Root
can be a single leaf, or has 2 to M children

 Nodes are at least half-full, so that the tree will not
degenerate into a simple binary tree or even a linked
list

36

The internal node structure of a
B+ tree

j a1 k1 a2 k2 a3 … kj aj+1

• Each leaf node stores key-data pair or key-dataReference
pair. Data or data references are in leaves only.

• Leaves form a doubly-linked list that is sorted in increasing
order of keys.

• Each internal node has the following structure:

j is the number of keys in the node.
ai is a reference to a subtree.
ki is <= the smallest key in subtree ai+1 and is > largest key in subtree ai.
k1 < k2 < k3 < . . . < kj

37

What is a B+ tree?

 Example: A B+ tree of order M = 5, L = 5

• Records or references to records are stored at the leaves, but we only show
the keys here

• At the internal nodes, only keys (and references to subtrees) are stored

• Note: The index set (i.e., internal nodes) contains distinct keys

38

What is a B+ tree?

 Example: A B+ tree of order M = 4, L = 4

Note: For simplicity the doubly linked list references that join leaf nodes are
omitted

39

Why B+ trees?

 Like a B-tree each internal node and leaf node is designed
to fit into one I/O block of data. An I/O block usually can
hold quite a lot of data. Hence, an internal node can
keep a lot of keys, i.e., large M. This implies that the tree
has only a few levels and only a few disk accesses can
accomplish a search, insertion, or deletion.

 B+-tree is a popular structure used in commercial
databases. To further speed up searches, insertions, and
deletions, the first one or two levels of the B+-tree are
usually kept in main memory.

 The reason that B+ trees are used in databases is, unlike
B-trees, B+ trees support both equality and range-
searches efficiently:
• Example of equality search: Find a student record with key

950000
• Example of range search: Find all student records with Exam

grade greater than 70 and less than 90

40

Why B+ trees ? (Cont’d)

A B+ tree supports equality and range-searches efficiently

Index Entries

Data Entries
("Sequence set")

(Direct search)

41

B+ Trees in Practice

• For a B+ tree of order M and L = M, with h levels of index,
where h ≥ 1:
– The maximum number of records stored is n = Mh – 1(L)

– The data records are in level h, where each leaf node holds L records.
– The space required to store the tree is O(n)
– Inserting a record requires O(logMn) operations in the worst case
– Finding a record requires O(logMn) operations in the worst case
– Removing a (previously located) record requires O(logMn) operations

in the worst case
– Performing a range query with k elements occurring within the range

requires O(logMn + k) operations in the worst case.

• Example for a B+ tree of order M = 133 and L = 100:
– A tree with 3 levels stores a maximum of 1332 (100) = 1,768,900

records
– A tree with 4 levels stores a maximum of: 1333(100) = 235,263,700

records

42

http://en.wikipedia.org/wiki/Range_query

Searching a B+ Trees

 Searching KEY:
 Start from the root
 If an internal node is reached:

 Search KEY among the keys in that node
– linear search or binary search

 If KEY < smallest key, follow the leftmost child reference down
 If KEY >= largest key, follow the rightmost child reference down
 If Ki <= KEY < Kj, follow the child reference between Ki and Kj

 If a leaf is reached:
 Search KEY among the keys stored in that leaf

– linear search or binary search
 If found, return the corresponding record; otherwise report not

found

43

Searching a B+ Trees

 In processing a query, a path is traversed in the tree
from the root to some leaf node.

 If there are K search-key values in the file, the path is
no longer than
 logm/2(K).

 With 1 million search key values and m = 100, at most
log50(1,000,000) = 4 nodes are accessed in a lookup.

44

Insertion in B+ Trees

 A B+ tree has two OVERFLOW CONDITIONS:
 A leaf-node overflows if after insertion it contains L + 1 keys
 A root-node or an internal node of a B+ tree of order M overflows if, after a key

insertion, it contains M keys.
 Insertion algorithm:

 Search for the appropriate leaf node x to insert the key.
 Note: Insertion of a key always starts at a leaf node.

 If the key exists in the leaf node x, report an error, else insert the key in its
proper sorted order in the leaf node.

 If the leaf does not overflow (If x contains less than L+1 keys after insertion),
the insertion is done, else

 If a leaf node overflows, split it into two, COPY the smallest key y of the right
split node and insert it (Using B-Tree Insertion Algorithm) to the parent of the
node (Records with keys < y go to the left leaf node. Records with keys >= y
go to the right leaf node).

Suppose that we want to insert a key K and its associated record into the B+ tree.

45

Insertion in B+ Trees: No overflow

An example of inserting O into a B+ tree of order M = 4, L = 3.

46

Insertion in B+ Trees: Splitting a Leaf Node
An example of inserting T into a B+ tree of order M = 4 and L= 3

47

Insertion in B+ Trees: Splitting an Internal Node
48

An example of inserting M into a B+ tree of order M= 4 and L = 3

Insertion in B+ Trees: Splitting an Internal Node (Cont.)
49

Insertion in B+ Trees (Increasing the Height)
Example: Insert 16 then 8 in the following B+ tree of order M = 5, L = 4:

50

8 16

overflow!

Root
17 24 3013

2 3 5 7 13 15

17 24 3013

2 3 13 15 165 7 8

5overflow!

13 15 16

135 3024

5 7 82 3

17

Deletion in B+ Trees

 Since the internal nodes of a B+ tree (index keys) are a
B-Tree, the deletion algorithm for B-Trees applies to it
whenever a key is removed from the internal node.

 Hence, we will concentrate on what to do when deleting
at the leaf node level.

 A B+ tree has two UNDEFLOW conditions:
 Leaf underflow Condition:

 A leaf underflows if after deleting a key from it, it contains L/2 - 1 keys
 Internal node underflow Condition:

 An internal node (excluding the root node) underflows if in the key deletion
process it contains M/2 - 2 keys

51

B+ Tree Deletion Algorithm

search for key targetKey;
if (targetKey is not found in a leaf) report an error;

else { // assume it is found in node x

remove targetKey and its data reference from node x;

if (node x did not underflow) return; // deletion is complete

else { // there is a leaf underflow (i.e. after deletion
// node x contains L/2-1 keys)

if (there is an adjacent sibling with at least L/2+1 keys)
borrow the appropriate key from the adjacent sibling;

// called Leaf Key Rotation where the appropriate key is the

// minimum (if right sibling) or the maximum (if left sibling)

else { // there is no adjacent sibling leaf with at least
// L/2+1 keys

merge the two leaves;
apply the B-Tree deletion algorithm on the key that was

separating the two leaves in the previous level of the

B+ Tree;

}}}

52

Deletion in B+ Tree: Leaf Key Rotation
53

 Let u be the node with leaf underflow.
 Leaf left key rotation (borrowing from adjacent right

sibling v):
 Move the minimum key of v to u
 Replace the separating key between u and v with

a copy of the new minimum in v

Deletion in B+ Tree: Leaf Key Rotation (cont’d)

 Let u be the node with leaf underflow.
 Leaf right key rotation (borrowing from

adjacent left sibling v)
 Move the maximum key of v to u
 Replace the separating key between u and

v with a copy of the new minimum in u

54

Leaf keys Merging (with Adjacent Right Sibling)
55

56

Leaf keys Merging (with Adjacent Left Sibling)

Deletion in B+ Tree - Case1: No underflow

Example: Delete 20 from the following B+ tree of order M = 3 and L = 3

No leaf underflow

Delete 20

57

20

15 18 25 30

9
11
13

15
17

18
19

20
21
24

25
26

30
31
33

20

15 18 25 30

9
11
13

15
17

18
19

21
24

25
26

30
31
33

Deletion in B+ Tree- Case 2: Leaf Key Borrowing

Example: Delete 25 from the following B+ tree of order M = 3 and L = 3

Delete 25
Leaf underflow

1- Borrow min key 30
from right sibling

58

20

15 18 25 30

9
11
13

15
17

18
19

20
21
24

25
26

30
31
33

20

15 18 25 30

9
11
13

15
17

18
19

20
21
24

26 30
31
33

2- Borrow max key 24
from left sibling

20

15 18 25 31

9
11
13

15
17

18
19

20
21
24

26
30

31
33

20

15 18 24 30

9
11
13

15
17

18
19

20
21

24
26

30
31
33

Two Solutions

Deletion in B+ Tree – Case 3: Leaf Merging

Example: Delete 15 from the following B+ tree of order M = 4 and L = 3

Delete 15 Leaf underflow

Cannot borrow. Two
Solutions: Merge
overflow node with
adjacent

59

20

6
7
8

11
14

15
17

20
21
24

25
26

30
31
33

11 15 18 25 30

18
19

20

6
7
8

11
14

17 20
21
24

25
26

30
31
33

11 15 18 25 30

18
19

20

6
7
8

11
14

17
18
19

20
21
24

25
26

30
31
33

11 15 25 30

20

6
7
8

11
14
17

18
19

20
21
24

25
26

30
31
33

11 18 25 30

1- Right sibling2- Left sibling

17
18
19

Deletion in B+ Tree – Case 4: Applying Rest of Cases in B-Tree
Deletion Algorithm on the Internal Nodes

 Example: Delete 26 from the following B+ tree of order M = 4 and L = 5

60

20

2
5
9

12 17 27

12
14
16

20
22
26

27
29
33

20

2
5
9

12 17 27

12
14
16

20
22

27
29
33

Leaf underflow

17
18
19

17
18
19

20

2
5
9

12 17

12
14
16

20
22
27
29
33

Internal node
underflow

17
18
19

17

2
5
9

12 20

12
14
16

20
22
27
29
33

Delete 26

Leaf
Merge

Borrow from
Left Sibling

	Slide Number 1
	Reading Assignment
	Objectives
	Motivation for studying Multi-Way Trees
	Motivation for studying Multi-Way Trees
	What is a Multi-way tree?
	The node structure of a Multi-way tree
	Examples of Multi-way Trees
	B-Trees
	What is a B-Tree?
	What is a B-tree? (cont’d)
	B-Tree Examples
	More on Why B-Trees
	Comparing B-Trees with AVL Trees
	Searching a B-Tree
	Insertion in B-Trees
	Insertion in B-Trees
	Insertion in B-Trees
	B-Tree Insertion Algorithm
	B-Tree Insertion Algorithm - Contd
	Deletion in B-Tree
	Deletion in B-Tree
	Deletion in B-Tree
	Deletion in B-Tree
	Deletion in B-Tree (cont’d)
	Deletion in B-Tree (cont’d)
	Deletion in B-Trees (cont’d)
	Deletion in B-Tree (cont’d)
	Slide Number 29
	Deletion in B-Tree (cont’d)
	Deletion in B-Tree (cont’d)
	Example involving a rotation and merging
	B-Tree Deletion Algorithm
	B-Tree Deletion Algorithm
	B+-Trees
	What is a B+ tree?
	The internal node structure of a B+ tree
	What is a B+ tree?
	What is a B+ tree?
	Why B+ trees?
	Why B+ trees ? (Cont’d)
	B+ Trees in Practice
	Searching a B+ Trees
	Searching a B+ Trees
	Insertion in B+ Trees
	Insertion in B+ Trees: No overflow
	Insertion in B+ Trees: Splitting a Leaf Node
	Insertion in B+ Trees: Splitting an Internal Node
	Insertion in B+ Trees: Splitting an Internal Node (Cont.)
	Insertion in B+ Trees (Increasing the Height)
	Deletion in B+ Trees
	B+ Tree Deletion Algorithm
	Deletion in B+ Tree: Leaf Key Rotation
	Deletion in B+ Tree: Leaf Key Rotation (cont’d)
	Leaf keys Merging (with Adjacent Right Sibling)
	Slide Number 56
	Deletion in B+ Tree - Case1: No underflow
	Deletion in B+ Tree- Case 2: Leaf Key Borrowing
	Deletion in B+ Tree – Case 3: Leaf Merging
	Deletion in B+ Tree – Case 4: Applying Rest of Cases in B-Tree Deletion Algorithm on the Internal Nodes

