
Unit 5

Recursion

King Fahd University of Petroleum & Minerals
College of Computer Science & Engineering

Information & Computer Science Department

Reading Assignment

 “Data Structures and Algorithms in Java”, 3rd Edition,
Adam Drozdek, Cengage Learning, ISBN 978-
9814239233
 Chapter 5 Sections 1-8, 10.
 Backtracking and the Case Study in Sections 9 and 11 are

optional reading.

Objectives

Discuss the following topics:
 Recursive Definitions
 Method Calls and Recursion Implementation
 Tracing of Recursive Methods
 Tail and Non-Tail Recursive Methods
 Direct and Indirect Recursive Methods
 Nested and non-Nested Recursive Methods
 Excessive Recursion
 Final Remarks on Recursion

3

Recursive Definitions

 Recursive definitions are programming concepts
that define themselves

 A recursive definition consists of two parts:
 The anchor or ground case, the basic elements that are

the building blocks of all other elements of the set
 Rules that allow for the construction of new objects out of

basic elements or objects that have already been
constructed

4

Recursive Definitions (continued)

 Recursive definitions serve two purposes:
 Generating new elements
 Testing whether an element belongs to a set

 Recursive definitions are frequently used to define
functions and sequences of numbers

5

What is a Recursive Method?

 A method is recursive if it calls itself either directly or indirectly.
 Recursion is a technique that allows us to break down a problem into

one or more simpler sub-problems that are similar in form to the original
problem.

 Example 1: A recursive method for computing x!

 This method illustrates all the important ideas of recursion:
 A base (or stopping) case

 Code first tests for stopping condition (is x = = 0 ?)
 Provides a direct (non-recursive) solution for the base case (0! = 1).

 The recursive case
 Expresses solution to problem in 1, 2 or more smaller parts
 Invokes itself to compute the smaller parts, eventually reaching the base case

long factorial (int x) {
if (x == 0)

return 1; //base case
else

return x * factorial (x – 1); //recursive case
}

6

What is a Recursive Method?

 Example 2: count zeros in an array

int countZeros(int[] x, int index) {
if (index == 0)

return x[0] == 0 ? 1: 0;
else if (x[index] == 0)

return 1 + countZeros(x, index – 1);
else

return countZeros(x, index – 1);
}

7

Method Calls and Recursion Implementation

 When a method is called an Activation Record is created. It contains:
 The values of the parameters.
 The values of the local variables.
 The return address (The address of the statement after the call statement).
 The previous activation record address.
 A location for the return value of the activation record.

 When a method returns:
 The return value of its activation record is passed to the previous activation

record or it is passed to the calling statement if there is no previous
activation record.

 The Activation Record is popped entirely from the stack.
 Recursion is handled in a similar way. Each recursive call creates a

separate Activation Record. As each recursive call completes, its
Activation Record is popped from the stack. Ultimately control passes
back to the calling statement.

8

 Modern computers use a stack as the primary memory management
model for a running program.

 Each running program has its own memory allocation containing the
typical layout as shown below.

9
Method Calls and Recursion Implementation

10

Figure 5-1 Contents of the run-time stack when main() calls
method f1(), f1() calls f2(), and f2() calls f3()

Method Calls and Recursion Implementation

Tracing of Recursive Methods

 A recursive method may be traced using the recursion tree it generates.
 Example1: Consider the recursive method f defined below. Draw the

recursive tree generated by the call f("KFU", 2) and hence determine the
number of activation records generated by the call and the output of the
following program:

public class MyRecursion3 {
public static void main(String[] args){

f("KFU", 2);
}

public static void f(String s, int index){
if (index >= 0) {

System.out.print(s.charAt(index));
f(s, index - 1);
System.out.print(s.charAt(index));
f(s, index - 1);

}
}

}

11

Tracing of Recursive Methods

 Note: The red
numbers indicate the
order of execution

 The output is:
UFKKFKKUFKKFKK

 The number of
generated activation
records is 15; it is the
same as the number
of generated recursive
calls.

12

Tracing of Recursive Methods

 Example2: The Towers of Hanoi problem:
 A total of n disks are arranged on a peg A from the largest to the smallest; such that

the smallest is at the top. Two empty pegs B and C are provided.
 It is required to move the n disks from peg A to peg C under the following restrictions:

 Only one disk may be moved at a time.
 A larger disk must not be placed on a smaller disk.
 In the process, any of the three pegs may be used as temporary storage.

 Suppose we can solve the problem for n – 1 disks. Then to solve for n disks use the
following algorithm:

Move n – 1 disks from peg A to peg B
Move the nth disk from peg A to peg C
Move n – 1 disks from peg B to peg C

13

Tracing of Recursive Methods

 This translates to the Java method hanoi given below:
import java.io.*;
public class TowersOfHanoi{

public static void main(String[] args) throws IOException {
BufferedReader stdin =

new BufferedReader(new InputStreamReader(System.in));
System.out.print("Enter the value of n: ");
int n = Integer.parseInt(stdin.readLine());
hanoi(n, 'A', 'C', 'B');

}

public static void hanoi(int n, char from, char to, char temp){
if (n == 1)

System.out.println(from + " --------> " + to);
else{

hanoi(n - 1, from, temp, to);
System.out.println(from + " --------> " + to);
hanoi(n - 1, temp, to, from);

}
}

}

14

Tracing of Recursive Methods

 Draw the recursion tree of the method hanoi for n = = 3 and hence
determine the output of the above program.

output of the program is:
A -------> C
A -------> B
C -------> B
A -------> C
B -------> A
B -------> C
A -------> C

15

 A method is tail recursive if in each of its recursive cases
it executes one recursive call and if there are no pending
operations after that call.

 Example 1:

 Example 2:

Tail and Non-Tail Recursive Methods

public static void f1(int n){
System.out.print(n + " ");
if(n > 0)

f1(n - 1);
}

public static void f3(int n){
if(n > 6){

System.out.print(2*n + " ");
f3(n – 2);

} else if(n > 0){
System.out.print(n + " ");
f3(n – 1);

}
}

16

 Example of non-tail recursive methods:
 Example 1:

 After each recursive call there is a pending System.out.print(n + " ") operation.

 Example 2:

 After each recursive call there is a pending * operation.

Tail and Non-Tail Recursive Methods

public static void f4(int n){
if (n > 0)

f4(n - 1);
System.out.print(n + " ");

}

long factorial(int x) {
if (x == 0)
return 1;

else
return x * factorial(x – 1);

}

17

Non-Tail Recursion Example

18

Figure 5-4 Examples of von Koch snowflakes

1. Divide an interval side into three even parts
2. Move one-third of side in the direction specified by

angle
3. Turn to the right 60° (i.e., turn –60°) and go

forward one-third of side
4. Turn to the left 120° and proceed forward

one-third of side
5. Turn right 60° and again draw a line one-third of

side long

19

Non-Tail Recursion Example

Figure 5-5 The process of drawing four sides of one segment of
the von Koch snowflake

Non-Tail Recursion Example

drawFourLines (side, level)

if (level = 0)

draw a line;
else

drawFourLines(side/3, level-1);

turn left 60°;
drawFourLines(side/3, level-1);

turn right 120°;
drawFourLines(side/3, level-1);

turn left 60°;
drawFourLines(side/3, level-1);

20

Non-Tail Recursion Example

21

Figure 5-6 Recursive implementation of the von Koch snowflake

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class vonKoch extends JFrame implements ActionListener {
public vonKoch() {

super("von Koch snowflake");
JButton draw = new JButton("draw");
lvl = new TextField("4",3);
len = new TextField("200",3);
lvl.addActionListener(this);
len.addActionListener(this);
draw.addActionListener(this);

Non-Tail Recursion Example

Recursive implementation of the von Koch snowflake(cont.)

Container cp = getContentPane();
cp.setLayout(new FlowLayout());
cp.add(new JLabel("level"));
cp.add(lvl);
cp.add(new JLabel("side"));
cp.add(len);
cp.add(draw);
panel.setBackground(Color.pink);
panel.setForeground(Color.white);
panel.setPreferredSize(new Dimension(600,400));
cp.add(panel);
setSize(700,500);
cp.setBackground(Color.red);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

22

Non-Tail Recursion Example

23

Recursive implementation of the von Koch snowflake(cont.)

static final long serialVersionUID = 123;
private TextField lvl, len;
private MyPanel panel = new MyPanel();
private double angle;
private Point currPt, pt = new Point();
private void right(double x) {

angle += x;
}
private void left (double x) {

angle -= x;
}

Non-Tail Recursion Example

24Recursive implementation of the von Koch snowflake(cont.)

private void drawFourLines(double side, int level, Graphics g) {
if (level == 0) {

// arguments to sin() and cos() must be angles given in radians,
// thus, the angles given in degrees must be multiplied by PI/180;
pt.x = ((int)(Math.cos(angle*Math.PI/180)*side)) + currPt.x;
pt.y = ((int)(Math.sin(angle*Math.PI/180)*side)) + currPt.y;
g.drawLine(currPt.x, currPt.y, pt.x, pt.y);
currPt.x = pt.x;
currPt.y = pt.y;

}
else {

drawFourLines(side/3.0,level-1,g);
left (60);
drawFourLines(side/3.0,level-1,g);
right(120);
drawFourLines(side/3.0,level-1,g);
left (60);
drawFourLines(side/3.0,level-1,g);

}
}

Non-Tail Recursion Example

Recursive implementation of the von Koch snowflake(cont.)

public void actionPerformed(ActionEvent e) {
panel.repaint();

}
class MyPanel extends JPanel {

static final long serialVersionUID = 124;
public void paintComponent(Graphics g) {

super.paintComponent(g);
int level = Integer.parseInt(lvl.getText().trim());
double side = Double.parseDouble(len.getText().trim());
currPt = new Point(200,150);
angle = 0;
for (int i = 1; i <= 3; i++) {
drawFourLines(side,level,g);
right(120);

}
}

}
static public void main(String[] a) {

new vonKoch();
}

} 25

Why tail recursion?

 It is desirable to have tail-recursive methods,
because:
a. The amount of information that gets stored during

computation is independent of the number of recursive
calls.

b. Some compilers can produce optimized code that replaces
tail recursion by iteration
i. In general, an iterative version of a method will execute more efficiently in

terms of time and space than a recursive version.
ii. This is because the overhead involved in entering and exiting a function in

terms of stack I/O is avoided in iterative version.
iii. Sometimes we are forced to use iteration because stack cannot handle

enough activation records - Example: power(2, 5000))
c. Tail recursion is important in languages like Prolog and

Functional languages like Clean, Haskell, Miranda, and SML
that do not have explicit loop constructs (loops are
simulated by recursion).

26

Direct and Indirect Recursive Methods

 A method is directly recursive if it contains an explicit call to itself.

 A method x is indirectly recursive if it contains a call to another method
which in turn calls x. They are also known as mutually recursive
methods:

long factorial (int x) {
if (x == 0)

return 1;
else

return x * factorial (x – 1);
}

public static boolean isEven(int n) {
if (n==0)

return true;
else

return(isOdd(n-1));
}

public static boolean isOdd(int n) {
return (! isEven(n));

}

27

Direct and Indirect Recursive Methods

receive(buffer)
while buffer is not filled up

if information is still incoming
get a character and store it in buffer;

else exit();
decode(buffer);

decode(buffer)
decode information in buffer;
store(buffer);

store(buffer)
transfer information from buffer to file;
receive(buffer);

28

Direct and Indirect Recursive Methods

 Another example of mutually recursive methods:

29

6

cos() 1 sin
2
xx  = −  

 

Direct and Indirect Recursive Methods

public static double sin(double x){
if(x < 0.0000001)

return x - (x*x*x)/6;
else{

double y = tan(x/3);
return sin(x/3)*((3 - y*y)/(1 + y*y));

}
}

public static double tan(double x){
return sin(x)/cos(x);

}

public static double cos(double x){
return 1 - sin(x/2);

}

30

Direct and Indirect Recursive Methods

31

Figure 5-7 A tree of recursive calls for sin (x)

 Nested recursion occurs when a method is not only defined in terms of
itself; but it is also used as one of the parameters:

 Example: The Ackerman function

 The Ackermann function grows faster than a multiple exponential
function.

Nested and Non-Nested Recursive Methods

public static long Ackmn(long n, long m){
if (n == 0)

return m + 1;
else if (n > 0 && m == 0)

return Ackmn(n – 1, 1);
else

return Ackmn(n – 1, Ackmn(n, m – 1));
}

32

Excessive Recursion

 A recursive method is excessively recursive if it repeats
computations for some parameter values.

 Example: The call fib(6) results in two repetitions of f(4). This in
turn results in repetitions of fib(3), fib(2), fib(1) and fib(0):

33

Excessive Recursion

34

Figure 5-9 Number of addition operations and number of recursive
calls to calculate Fibonacci numbers

Excessive Recursion

35

Figure 5-10 Comparison of iterative and recursive algorithms
for calculating Fibonacci numbers

Final Remarks on Recursion

 Why Recursion?

 The need for Auxiliary (Helper) Methods

 Common Errors in Writing Recursive Methods:

36

Why Recursion?

 Usually recursive algorithms have less code, therefore algorithms can
be easier to write and understand - e.g. Towers of Hanoi. However,
avoid using excessively recursive algorithms even if the code is simple.

 Sometimes recursion provides a much simpler solution. Obtaining the
same result using iteration requires complicated coding - e.g.
Quicksort, von Koch snowflakes, Towers of Hanoi, etc.

 Recursive methods provide a very natural mechanism for processing
recursive data structures. A recursive data structure is a data structure
that is defined recursively – e.g. Tree.

• Functional programming languages such as Clean, FP, Haskell,
Miranda, and SML do not have explicit loop constructs. In these
languages looping is achieved by recursion.

37

Why Recursion?

public static long power1 (int x, int n) {
long product = 1;
for (int i = 1; i <= n; i++)

product *= x;
return product;

}

public static long power2 (int x, int n) {
if (n == 1) return x;
else if (n == 0)return 1;
else {

long t = power2(x , n / 2);
if ((n % 2) == 0) return t * t;
else return x * t * t;

}
}

• Some recursive algorithms are more efficient than equivalent
iterative algorithms.

• Example:

38

The need for Auxiliary (or Helper) Methods

 Auxiliary or helper methods are used for one or more of the
following reasons:
 To make recursive methods more efficient.
 To make the user interface to a method simpler by hiding the

method's initializations.
 Example 1: Consider the method:

 The condition x < 0, which should be executed only once, is
being executed in each recursive call. We can use a private
auxiliary method to avoid this.

public long factorial (int x){
if (x < 0)

throw new IllegalArgumentException("Negative argument");
else if (x == 0)

return 1;
else

return x * factorial(x – 1);
}

39

The need for Auxiliary (or Helper) Methods

public long factorial(int x){
if (x < 0)

throw new IllegalArgumentException("Negative argument");
else

return factorialAuxiliary(x);
}

private long factorialAuxiliary(int x){
if (x == 0)

return 1;
else

return x * factorialAuxiliary(x – 1);
}

40

The need for Auxiliary (or Helper) Methods

 Example 2: Consider the method:

 The first time the method is called, the parameter low and high must be set to 0
and array.length – 1 respectively. Example:

 From a user's perspective, the parameters low and high introduce an unnecessary
complexity that can be avoided by using an auxiliary method:

public int binarySearch(int target, int[] array, int low, int high) {
if(low > high)

return -1;
else {

int middle = (low + high)/2;
if(array[middle] == target)

return middle;
else if(array[middle] < target)

return binarySearch(target, array, middle + 1, high);
else

return binarySearch(target, array, low, middle - 1);
}

}

int result = binarySearch (target, array, 0, array.length -1);

41

The need for Auxiliary (or Helper) Methods

 A call to the method becomes simple:

public int binarySearch(int target, int[] array){
return binarySearch(target, array, 0, array.length - 1);

}

private int binarySearch(int target, int[] array, int low, int high){
if(low > high)

return -1;
else{

int middle = (low + high)/2;
if(array[middle] == target)

return middle;
else if(array[middle] < target)

return binarySearch(target, array, middle + 1, high);
else

return binarySearch(target, array, low, middle - 1);
}

}

int result = binarySearch(target, array);

42

Common Errors in Writing Recursive Methods

 The method does not call itself directly or indirectly.
 Non-terminating Recursive Methods (Infinite recursion):

a) No base case.

b) The base case is never reached for some parameter values.

int badFactorial(int x) {
return x * badFactorial(x-1);

}

int anotherBadFactorial(int x) {
if(x == 0)

return 1;
else

return x*(x-1)*anotherBadFactorial(x -2);
// When x is odd, we never reach the base case!!

}

43

Common Errors in Writing Recursive Methods

 Post increment and decrement operators must not be used since the
update will not occur until AFTER the method call - infinite recursion.

 Local variables must not be used to accumulate the result of a recursive
method. Each recursive call has its own copy of local variables.

public static int sumArray (int[] x, int index) {
if (index == x.length)return 0;
else

return x[index] + sumArray (x, index++);
}

public static int sumArray (int[] x, int index) {
int sum = 0;
if (index == x.length)return sum;
else {

sum += x[index];
return sumArray(x,index + 1);

}
}

44

Common Errors in Writing Recursive Methods

 Wrong placement of return statement.
 Consider the following method that is supposed to calculate the sum of

the first n integers:

 When result is initialized to 0, the method returns 0 for whatever value
of the parameter n. The result returned is that of the final return
statement to be executed. Example: A trace of the call sum(3, 0) is:

public static int sum (int n, int result) {
if (n >= 0)

sum(n - 1, n + result);
return result;

}

45

Common Errors in Writing Recursive Methods

 A correct version of the method is:

 Example: A trace of the call sum(3, 0) is:

public static int sum(int n, int result){
if (n == 0)

return result;
else

return sum(n-1, n + result);
}

46

Common Errors in Writing Recursive Methods

 The use of instance or static variables in recursive methods should be
avoided.

 Although it is not an error, it is bad programming practice. These
variables may be modified by code outside the method and cause the
recursive method to return wrong result.

public class Sum{
private int sum;

public int sumArray(int[] x, int index){
if(index == x.length)

return sum;
else {

sum += x[index];
return sumArray(x,index + 1);

}
}

}

47

	Slide Number 1
	Reading Assignment
	Objectives
	Recursive Definitions
	Recursive Definitions (continued)
	What is a Recursive Method?
	What is a Recursive Method?
	Method Calls and Recursion Implementation
	Slide Number 9
	Method Calls and Recursion Implementation
	Tracing of Recursive Methods
	Tracing of Recursive Methods
	Tracing of Recursive Methods
	Tracing of Recursive Methods
	Tracing of Recursive Methods
	Tail and Non-Tail Recursive Methods
	Tail and Non-Tail Recursive Methods
	Non-Tail Recursion Example
	Slide Number 19
	Non-Tail Recursion Example
	Non-Tail Recursion Example
	Non-Tail Recursion Example
	Non-Tail Recursion Example
	Non-Tail Recursion Example
	Non-Tail Recursion Example
	Why tail recursion?
	Direct and Indirect Recursive Methods
	Direct and Indirect Recursive Methods
	Direct and Indirect Recursive Methods
	Direct and Indirect Recursive Methods
	Direct and Indirect Recursive Methods
	Nested and Non-Nested Recursive Methods
	Excessive Recursion
	Excessive Recursion
	Excessive Recursion
	Final Remarks on Recursion
	Why Recursion?
	Why Recursion?
	The need for Auxiliary (or Helper) Methods
	The need for Auxiliary (or Helper) Methods
	The need for Auxiliary (or Helper) Methods
	The need for Auxiliary (or Helper) Methods
	Common Errors in Writing Recursive Methods
	Common Errors in Writing Recursive Methods
	Common Errors in Writing Recursive Methods
	Common Errors in Writing Recursive Methods
	Common Errors in Writing Recursive Methods

