King Fahd University of Petroleum & Minerals
College of Computer Science & Engineering

Information & Computer Science Department

Information and 4 (&
Computer ‘&eﬂmch —~—

= "Data Structures and Algorithms in Java”, 3™ Edition,
Adam Drozdek, Cengage Learning, ISBN 978-
0814239233

Chapter 4

Information and » /.-
Computer '@n:;ﬂmnch Lit

Discuss the following topics:

= Stacks

= Queues

= Priority Queues

= Case Study: Exiting a Maze [Self Reading]

Information and » /.-
Computer '@m’lmnch Lit

= A stack is a linear data structure that can be

accessed only at one of its ends for storing and
retrieving data

= A stack is called an LIFO structure: last in/first out

Information and
Computer “Sﬁﬂﬁﬂ&h

4
«

—

= The following operations are needed to properly
manage a stack:
clear() — Clear the stack
IsEmpty() — Check to see if the stack is empty
push(el)— Put the element e/ on the top of the stack
pop() — Take the topmost element from the stack

topEl() — Return the topmost element in the stack without
removing it

5

Information and . (&
Computer *Sn:;ﬂmnch —

push 10 push 5 pop push 15 push? pop

! _;

A series of operations executed on a stack

6
Information and h (&

Computer Scienc:

public class Stack<T> {
private java.util.ArrayList<T> pool = new java.util.ArrayList<T>() ;
public Stack() {
}
public Stack(int n) {
pool .ensureCapacity (n) ;

}

public void clear() ({

O(n)

pool.clear() ;
}
public boolean isEmpty () ({
return pool.isEmpty() ; ()(1)
}
publ%c T.topEl() { ()(1)
if (isEmpty())
throw new java.util.EmptyStackException() ;
return pool.get(pool.size()-1);

Array list implementation of a stack

4
Information and (& 7. -
Computer -Smﬂmcél -(-.!_"

public T pop() {
if (isEmpty())

throw new java.util.EmptyStackException() ; ()(1)
return pool.remove (pool.size()-1);
}
public void push(T el) { O(1)
pool.add(el) ;
}
public String toString() {
O(n)

return pool.toString() ;

Array list implementation of a stack (continued)

8

nformation and & o
Computer -Smﬂmc& -~

public class LLStack<T> {
private java.util.LinkedList<T> list = new java.util.LinkedList<T>() ;
public LLStack () {

}
public void clear () { ()(1)

list.clear() ;
}
public boolean isEmpty () ({
return list.isEmpty() ; ()(1)
}
public T topEl () ({
if (isEmpty()) ()(1)
throw new java.util.EmptyStackException() ;
return list.getlast();

Implementing a stack as a linked list

9

Infformation and & ;.q-
Computer 'Stm']umc& -(-...!_"'

public T pop() {
if (isEmpty())
throw new java.util.EmptyStackException() ; ()(1)

return list.removelast() ;
}
public void push(T el) ({
list.add(el) ; ()(1)
}
public String toString() {
return list.toString(); ()(rl)

Implementing a stack as a linked list (continued)

10
Information and & ;.q-
Computer 'Sni]umn:a -(-..!_‘

push(10) —push(5) »pop
(a) ('r (-)-

5

[10|

10

(-push[ISJ(* push(7)

15

L 10 |

10

Pop
7

15

10

15

10

(b) g 7
5 5 15 15 15
[o] [1]] 10 10 [1] [10 10 10 10
size pool
head head head head head head
(c) S0 M5 0| >M10] >[5 0 | > 7 15 Tl e BE 10

\

\

"

\

R

i

\

A series of operations executed on an abstract stack (a) and the
stack implemented with an array (b) and with a linked list (c)

Information and
Computer Scienc

als

Method Operation

boolean empty() Return true if the stack includes no element and £alse otherwise.

Object peek() Return the top element on the stack; throw EmptyStackException
for empty stack.

Object pop() Remove the top element of the stack and return it; throw

EmptyStackException for empty stack.
Object push(Object el) Insert el atthe top of the stack and return it.

int search(Object el) Return the position of el on the stack (the first position is at the top; —1
in case of failure).

Stack() Create an empty stack.,

A list of methods in java.util. Stack; all methods from
Vector are inherited

12

Information and & ;.g-
Computer Stiencel s

= Some direct applications:
Delimiter Matching
Adding Large Numbers
Evaluating postfix expressions
Page-visited history in a Web browser
Undo sequence in a text editor
Chain of method calls in the Java Virtual Machine

= Some indirect applications
Auxiliary data structure for some algorithms
Component of other data structures

Information and .
Computer Sci mch

(&
——

= These examples are properly-delimited statements :
a=Db+ (c-d) * (e - f);

g[10] = h[i[9]] + (3 + k) * 1;
while (m < (n[8] + 0)) { p = 7; /* initialize p */ r = 6; }

= These examples are statements in which mismatching occurs:
a=Db+ (¢c-d * (e - 1f));
g[10] = h[i[9]] + J + k) * 1;
while (m < (n[8] + o]) { p = 7; /* initialize p */ r = 6; }

14
Inf. tion and =7
Computer Seano ol

Computer Sc

delimiterMaching(file)
read character ch from file;
while notendof file

¥

if

if eh 5, orf
push(ch);
else if ch isa double guote
skip all characters to a double quote;
alse if ch 15°), " or"f’
if ch and popped off delimiter do not match
failure;
else if ch is '/
read the next character:

if this characteris " *°
skip all characters until **/" is found and report an error
if the end of file is reached before ™~/ is encountered;
else ch = the character read in;
continue; // go to the beginning of the loop;
else ignore other characters;
read next character ch from file;
stack is empty
SUCCess;

else failure;

Information and . (&
Computer Stiencol ses

Stack
empty

empty
empty
empty
[
[[]
empty
empty
empty

empty

Nonblank Character Read Input Left
s=t[5]+u/(v*(w+y))

S =t[5]+u/(v*(w+y))

= t[5] +u/(v*(w+y));

t [5] +u/(v* (w+y));
[5] +u/(v*(w+y))
5 [+u/(v*(w+y)

] +u/(v*(w+y));

+ u/ (v (w+y);

u [(v (w+y));

/ (v* (w+y));

Processing the statement s=t[5]+u/ (v* (w+y)) ; with

the algorithm delimiterMatching ()
16

Information and . (&
Computer *Snﬂmnch —~—

(V(W)
v “(W+y));
) (W+y));
(wty))
i +y))
4 v));
Y));
);
empty) ;

empty ;

Processing the statement s=t[5]+u/ (v* (w+y)) ; with
the algorithm delimiterMatching () (continued)

17
Information and 4 .g-
Computer Sci anecd L:‘:

592
+ 3784 +

e
+
[+ + IR]

= |
p—
-]
—
%]

4376

4
operand- z 9
Stack1 5 5 s
6 L7 L3 4
operand- ? 7
Stack?2 3 - :

result-
‘ \ 7 7
Stack 6 ; i

An example of adding numbers 592 and 3,784 using stacks

L=}

W~ 00 B

o

18

Information and & ;.g-
Computer Stiencel s

(54+9)*2+6*5
= An ordinary arithmetical expression like the above is

called infix-expression -- binary operators appear in
between their operands.

= The order of operations evaluation is determined by
the precedence rules and parenthesis.

= When an evaluation order is desired that is different
from that provided by the precedence, parentheses
are used to override precedence rules.

Information and . (&
Computer *Snﬂmnch —~—

= Expressions can also be represented using
notation - where an operator comes after its two
operands.

= The advantage of postfix notation is that the order of
operation evaluation is unigue without the need for
precedence rules or parenthesis.

Infix Postfix

16/ 2 16 2 /

(2 + 14)* 5 2 14 + 5 *
2 + 14*5 2 14 5 *+
(6-2)*(5+4) |6 2 -54 +*

Information and . (&
Computer *Snﬂmnch —~—

= The following algorithm uses a stack to evaluate a postfix expressions.

Start with an empty stack
for (each item in the expression) {
if (the item is a number)
Push the number onto the stack
else if (the item is an operator){
Pop two operands from the stack
Apply the operator to the operands
Push the result onto the stack

}

Pop the only one number from the stack — that’s the result of the evaluation

Information and . s
Computer Sciencel s’

= Example: Consider the postfix expression, 2 10 + 9 6 - /, which is
(2 + 10) / (9 - 6) in infix, the result of which is 12 / 3 = 4.

= The following is a trace of the postfix evaluation algorithm for the above.

210+ 36 -1

Infformation and « (&
Computer ‘@Qﬂ.ﬁﬂ&h —

= A queue is a waiting line that grows by adding
elements to its end and shrinks by taking elements
from its front

= A queue is a structure in which both ends are used:
One for adding new elements
One for removing them

= A queue is an FIFO structure: first in/first out

23

Information and . (&
Computer *Sn:;ﬂmnch —

= The following operations are needed to properly
manage a queue:
clear() — Clear the queue
IsEmpty() — Check to see if the queue is empty
engueue(el/) — Put the element e/ at the end of the queue
deqgueue() — Take the first element from the queue

firstEl() — Return the first element in the queue without
removing it

24

Information and . (&
Computer Sci mnch _—

enqueue(10) dequeue() enqueue(7)

(e?ueue(i) enqueue(15) dequeue()
10 10| 5 5 5 |15 511517 15 7

A series of operations executed on a queue

25

Infformation and « (&
Computer Sciencel s

first last

last first last first

[4]2]15[11]10][6| 8]

I10|6|8IiIiI15|11I @
| (Y

(c)

first

T3S
first last
L] lil4lgl [| ‘.ﬁ

NSO

l enqueue(6) ‘l’ enqueue(6)

firs
ﬁist ITt rbﬁ t
L[[2[4]8[6] | .

(a)
first last
Y ¥
LL [| [2]4]8]
lenqueue(()]
last first
Y
L6 [[[2[4]8]
(d

) ‘a&

last
(f)

Two possible configurations in an array implementation
of a queue when the queue is full

26

Information and & ;.g-
Computer Stiencel s

public class ArrayQueue {
private int first, last, size;
private Object[] storage;
public ArrayQueue() {
this(100);

¥

public ArrayQueue(int n) {
size = n;

storage = new Object[size]; ()()
first = last = -1:;

}

public boolean isFull() { ()()
return first == 0 && last == size-1 || first == last + 1;

}

public boolean isEmpty() { ()()
return first == -1;

Array implementation of a queue

27

Information and
Computer Scienc

aLs

}
public void engueue(Object el) {

if (last == size-1 || last == -1) {
storage[0] = el;
last = 0;
if (first == -1) ()()
first = 0;
}

else storage[++last] = el;

Array implementation of a queue (continued)

28

Information and & ;.g-
Computer Scienceol st

public Object dequeue() {
Object tmp = storage[first];
if (first == last)

last = first = -1; o()
else if (first == size-l)
first = 0;

else first++;
return tmp;

}
public void printAll() {
for (int 1 = 0; i < size; i++) Oo()
System.out.print(storage[i] + " ");
1)

Array implementation of a queue (continued)

29

Information and & ;.g-
Computer Stiencel s

public class Queue<T> {
private java.util.LinkedList<T> list = new java.util.LinkedList<T>() ;

public Queue () {
}

public void clear() ({

list.clear(); ()()
}
public boolean isEmpty () { Oo()
return list.isEmpty() ;
}
public T firstEl() { ()()

return list.getFirst();

Linked list implementation of a queue

30

Information and & ;.q-
Computer 'Stm']nmn:&,(&

public T dequeue() {

return list.removeFirst() ; ()()

}
public void enqueue (T el) ({

list.addLast(el) ; ()()
}
public String toString() {
Oo()

return list.toString() ;

Linked list implementation of a queue (continued)

31

nformation and & (&
Computer *Snﬂmch ~—

fnqueue(IOIenqueue{Sjrdequeue cenqueue(ﬁ:fenqueue(?) -dequeue

7
(a) 5 15 15 7
0 ; : 5
(®) 7 7
last 15 15 15
(0] 3 [[5 : =
[-1] [o][10] [o][T10 10 10 [1] [0 10
first storage
head tail. head tail head tail> head tail head tail head tail
00 SR T T T B T o [T T 5 <3
(c) \)(\ \ *7(\ Jj(;(\ 7(\
\ \ I \ \ . \ . . \ .

A series of operations executed on an abstract queue (a) and the
queue implemented with an array (b) and with a linked list (c)

32

Information and S (

Computer Stiencol s

= In queuing theory, various scenarios are analyzed and
models are built that use queues for processing requests
or other information in a predetermined sequence (order)

33

Information and & ;.g-
Computer -Sn:;ﬂmnch Lit

Amount of

Number of Percentage Time Needed
Customers of One-Minute for Service Percentage of
per Minute Intervals Range in Seconds Customers Range
0 15 1-15 0 0 _
1 20 16-35 10 0 —
2 25 3660 20 0 -
3 10 61-70 30 10 1-10
4 30 71-100 40 5 11-15
(a) 50 10 16-25
60 10 26-35
70 0 —
80 15 36-50
90 25 51-75
100 10 7685
110 15 86-100

(b)

Bank One example: (a) data for number of arrived customers per
one-minute interval and (b) transaction time in seconds per customer

34

Information and & ;.g-
Computer Stiencel s

class BankSimulation {

static java.util.Random rd = new java.util.Random() ;
static int Option(int percents[]) ({
int 1 = 0, perc, choice = Math.abs(rd.nextInt()) % 100 + 1;
for (perc = percents[0]; perc < choice; perc += percents[i+l], i++);
return i;
}
public static void main(String args[]) {
int[] arrivals = {15,20,25,10,30};
int[] service = {0,0,0,10,5,10,10,0,15,25,10,15};
int[] clerks = {0,0,0};
int clerksSize = clerks.length;
int customers, t, i, numOfMinutes = 100, x;
double maxWait = 0.0, thereIsline = 0.0, currWait = 0.0;
Queue<Integer> simulQ = new Queue<Integer>() ;

Bank One example: implementation code

35

Information and (& 7. -
Computer -Smﬂmcél -(-.!_"

for (t = 1; t <= numOfMinutes; t++) {

System.out.print(" t = " + t);
for (1 = 0; i < clerksSize; i++)// after each minute subtract
if (clerks[i] < 60) // at most 60 seconds from time
clerks[i] = O; // left to service the current
else clerks[i] -= 60; // customer by clerk i;

customers = Option (arrivals) ;

for (i = 0; i < customers; i++) { // enqueue all new customers
X = Option (service) *10; // (or rather service time
simulQ.enqueue (x) ; // they require) ;
currWait += x;

Bank One example: implementation code (continued)

36

Infformation and & ;.q-
Computer 'Stm']umc& -(-...!_"'

// dequeue customers when clerks are available:

for (1 = 0; i < clerksSize && !'simulQ.isEmpty();)
if (clerks[i] < 60) {

X = simulQ.dequeue(); // assign more than one customer
clerks[i] += x; // to a clerk if service time
currWait -= x; // is still below 60 sec;

}

else i++;
if (!'simulQ.isEmpty()) {
therelsLine++;
System.out.printf (" wait = %$.1f", currWait/60.0) ;
if (maxWait < currWait)
maxWait = currWait;

}

else System.out.print(" wait = 0;");

Bank One example: implementation code (continued)

37

Information and (& 7. -
Computer -Smﬂmcél -(-.!_"

System.out.println("\nFor " + clerksSize + " clerks, there was a line "
+ thereIsLine/numOfMinutes*100.0 + "% of the time;\n"

+ "maximum wait time was " + maxWait/60.0 + " min.");

Bank One example: implementation code (continued)

38

Information and . (&
Computer Sci mnch _—

A priority queue can be assigned to enable a
particular process, or event, to be executed out of
sequence without affecting overall system operation

In priority queues, elements are dequeued

according to their priority and their current queue
position

39

Information and . (&
Computer Sci mnch _—

= Priority queues can be represented by two variations
of linked lists:

All elements are entry ordered

Order is maintained by putting a new element
in its proper position according to its priority

40

Information and & ;.g-
Computer -Sn:;ﬂmnch Lit

	Slide Number 1
	Reading Assignment
	Objectives
	Stacks
	Stacks (continued)
	Stacks (continued)
	Stacks (continued)
	Stacks (continued)
	Stacks (continued)
	Stacks (continued)
	Stacks (continued)
	Stacks in java.util
	Applications of Stack
	Delimiter Matching
	Delimiter Matching Algorithm
	Delimiter Matching
	Delimiter Matching
	Adding Large Numbers
	Application of Stacks: Evaluating Postfix Expressions
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Queues
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Priority Queues
	Priority Queues (continued)

