
Unit 1

Review of Object-Oriented Concepts

King Fahd University of Petroleum & Minerals
College of Computer Science & Engineering

Information & Computer Science Department



Review of Object-Oriented Concepts in JAVA

 Object-Oriented Concepts supported by JAVA.

 Advantages of Object-Orientation.

 Inheritance.

 Abstract Classes.

 Interfaces.

 Review Questions. 

2



Object-Oriented Concepts supported by JAVA

 Java provides explicit support for many of the fundamental Object-
Oriented Concepts.  Some of these are:
 Classification:  Grouping related things together.  This is 

supported through classes, inheritance & packages.
 Encapsulation:  Representing data and the set of operations 

on the data as a single entity - exactly what classes do. 
 Information Hiding:  An object should be in full control of its 

data, granting specific access only to whom it wishes. 
 Inheritance: Java allows related classes to be organized in a 

hierarchical manner using the extends keyword.
 Polymorphism: Same code behaves differently at different  

times during execution. This is due to dynamic binding. 

3



Advantages of Object-Orientation.

 A number of advantages can be derived as a result of these 
object-oriented features.  Some of these are:
 Reusability:  Rather than endlessly rewriting the same 

piece of code, we write it once and use it or inherit it as 
needed.

 Extensibility:  A class can be extended without affecting 
its users provided that the user-interface remains the same.

 Maintainability: Again, once the user-interface does not 
change, the implementation can be changed at will.

 Security: Thanks to information hiding, a user can only 
access the information he has been allowed to access.

 Abstraction: Classification and Encapsulation allow 
portrayal of real-world problems in a simplified model. 

4



Review of inheritance

 Suppose we have the following Employee class:

class Employee  {
protected String name;
protected double payRate;
public Employee(String name, double payRate)  {

this.name = name;
this.payRate = payRate; 

}
public String getName()  {return name;}
public void setPayRate(double newRate)  {

payRate = newRate;
}
public double pay()  {return payRate;}
public void print()  {

System.out.println("Name: " + name);
System.out.println("Pay Rate: "+payRate);

}
}

5



Review of inheritance (contd.)
 Now, suppose we wish to define another class to 

represent a part-time employee whose salary is paid per 
hour.  We inherit from the Employee class as follows:

class HourlyEmployee extends Employee  {
private int hours;
public HourlyEmployee(String hName, double hRate)  {

super(hName, hRate);
hours = 0;

}
public void addHours(int moreHours)  {hours += moreHours;}
public double pay()  {return payRate * hours;}
public void print()  {

super.print();
System.out.println("Current hours: " + hours);

}
}

6



Notes about Inheritance

 We observe the following from the examples on inheritance: 
• Methods and instance variables of the super class are inherited by 

subclasses, thus allowing for code reuse.
• A subclass can define additional instance variables (e.g. hours) 

and additional methods (e.g. addHours).
• A subclass can override some of the methods of the super class to 

make them behave differently (e.g. the pay & print)
• Constructors are not inherited, but can be called using the super 

keyword.  such a call must be the first statement.
 If the constructor of the super class is not called, then the complier 

inserts a call to the default constructor -watch out!

• super may also be used to call a method of the super class.

7



Review of Abstract Classes

 Inheritance enforces hierarchical organization, the benefits of 
which are: reusability, type sharing and polymorphism.

 Java uses Abstract classes & Interfaces to further strengthen 
the idea of inheritance.

 To see the role of abstract of classes, suppose that the pay
method is not implemented in the HourlyEmployee subclass.
 Obviously, the pay method in the Employee class will be assumed, which 

will lead to wrong result.
 One solution is to remove the pay method out and put it in another 

extension of the Employee class, MonthlyEmployee.
 The problem with this solution is that it does not force  subclasses of 

Employee class to implement the pay method.

8



Review of Abstract Classes (Cont'd)

 The solution is to declare the pay method of the Employee class as 
abstract, thus, making the class abstract.

abstract class Employee  {
protected String name;
protected double payRate;
public Employee(String empName, double empRate)  {

name = empName;
payRate = empRate;

}
public String getName()  {return name;}  
public void setPayRate(double newRate)  {payRate = newRate;}

abstract public double pay();

public void print()  {
System.out.println("Name: " + name);
System.out.println("Pay Rate: "+payRate);

}
}

9



Review of Abstract Classes (Cont'd)

 The following extends the Employee abstract class to get 
MonthlyEmployee class.

 The next example extends the MonthlyEmployee class to get  
the Executive class.

class MonthlyEmployee extends Employee  {
public MonthlyEmployee(String empName, double empRate) {

super(empName, empRate);
}
public double pay()  {

return payRate;
}

}

10



Review of Abstract Classes (Cont'd)

class Executive extends MonthlyEmployee  {
private double bonus;
public Executive(String exName, double exRate)  {

super(exName, exRate);
bonus = 0;

}
public void awardBonus(double amount)  {

bonus = amount;
}
public double pay()  {

double paycheck = super.pay() + bonus;
bonus = 0;
return paycheck;

}
public void print()  {

super.print();
System.out.println("Current bonus: " + bonus);

}
}

Employee 

HourlyEmployee

MonthlyEmployee Executive

11



public class TestAbstractClass  {
public static void main(String[] args)  {

Employee[] list = new Employee[3];
list[0] = new Executive("Jarallah Al-Ghamdi", 50000);
list[1] = new HourlyEmployee("Azmat Ansari", 120);
list[2] = new MonthlyEmployee("Sahalu Junaidu", 9000);
((Executive)list[0]).awardBonus(11000);

for(int i = 0; i < list.length; i++)
if(list[i] instanceof HourlyEmployee)

((HourlyEmployee)list[i]).addHours(60);
for(int i = 0; i < list.length; i++)  { 

list[i].print();
System.out.println("Paid: " + list[i].pay());
System.out.println("*************************");

}   
}     

} 

Review of Abstract Classes (Cont'd)
 The following further illustrates the advantages of organizing 

classes using inheritance - same type, polymorphism, etc.

12

The Program Output



Review of Interfaces

 Interfaces are not classes, they are entirely a separate entity. 
 They provide a list of abstract methods which MUST be 

implemented by a class that implements the interface.
 Unlike abstract classes which may contain implementation of 

some of the methods, interfaces provide NO implementation.
 Like abstract classes, the purpose of interfaces is to provide 

organizational structure. 
 More importantly, interfaces are here to provide a kind of 

"multiple inheritance" which is not supported in Java.
 If both parents of a child implement a method, which one does the child 

inherits? - Multiple inheritance confusion.
 Interfaces allow a child to be both of type A and B. 

13



Review of Interfaces (contd.)

 Recall that Java has the Comparable interface defined as:

 Recall also that java has the java.util.Arrays class, which has a 
sort method that can sort any array whose contents are either 
primitive values or Comparable objects.

 Thus, to sort our list of Employee objects, all we need is to 
modify the Employee class to implement the Comparable 
interface.

 Notice that this will work even if the Employee class is 
extending another class or implementing another interface.

 This modification is shown in the next page.

interface Comparable {
int compareTo(Object o);

}

14



Review of Interfaces (contd.)
abstract class Employee implements Comparable  {

protected String name;
protected double payRate;
public Employee(String empName, double empRate)  {

name = empName;
payRate = empRate;

}
public String getName()  {return name;}
public void setPayRate(double newRate)  {

payRate = newRate;
} 
abstract public double pay();
public int compareTo(Object o)  {

Employee e = (Employee) o;
return name.compareTo( e.getName());

}
}

Employee 

HourlyEmployee

MonthlyEmployee ExecutiveComparable

15



import java.util.Arrays;
public class TestInterface  {

public static void main(String[] args)  {
Employee[] list = new Employee[3];
list[0] = new Executive("Jarallah Al-Ghamdi", 50000);
list[1] = new HourlyEmployee("Azmat Ansari", 120);
list[2] = new MonthlyEmployee("Sahalu Junaidu", 9000);
((Executive)list[0]).awardBonus(11000);
for(int i = 0; i < list.length; i++) 

if(list[i] instanceof HourlyEmployee) 
((HourlyEmployee)list[i]).addHours(60);

Arrays.sort(list);
for(int i = 0; i < list.length; i++)  {

list[i].print();
System.out.println("Paid: " + list[i].pay());
System.out.println("**********************");

}
}

}

Review of Interfaces (contd.)
 Since Employee class implements the Comparable interface, the array of 

employees can now be sorted as shown below:

The program output

16



Review Questions

 How does an interface differ from an abstract class?
 Why does Java not support multiple inheritance?  What feature 

of Java helps realize the benefits of multiple inheritance?
 An Abstract class must contain at least one abstract method, 

(true or false)?
 The number of objects of a subclass is typically larger than its 

super class, (true or false)? 
 A subclass typically encapsulates less functionality than its 

super class does, (true or false)?
 An instance of a class can be assigned to a variable of type  

any of the interfaces the class implements, (true or false)? 

17


	Slide Number 1
	Review of Object-Oriented Concepts in JAVA
	Object-Oriented Concepts supported by JAVA
	Advantages of Object-Orientation.
	Review of inheritance
	Review of inheritance (contd.)
	Notes about Inheritance
	Review of Abstract Classes
	Review of Abstract Classes (Cont'd)
	Review of Abstract Classes (Cont'd)
	Review of Abstract Classes (Cont'd)
	Review of Abstract Classes (Cont'd)
	Review of Interfaces
	Review of Interfaces (contd.)
	Review of Interfaces (contd.)
	Review of Interfaces (contd.)
	Review Questions

