
Unit 4

Stacks And Queues

King Fahd University of Petroleum & Minerals
College of Computer Science & Engineering

Information & Computer Science Department



Reading Assignment

 “Data Structures and Algorithms in Java”, 3rd Edition, 
Adam Drozdek, Cengage Learning, ISBN 978-
9814239233 
 Chapter 4



Objectives

Discuss the following topics: 
 Stacks
 Queues
 Priority Queues
 Case Study: Exiting a Maze [Self Reading]

3



Stacks

 A stack is a linear data structure that can be 
accessed only at one of its ends for storing and 
retrieving data

 A stack is called an LIFO structure: last in/first out

4



Stacks (continued)

 The following operations are needed to properly 
manage a stack:
 clear() — Clear the stack
 isEmpty() — Check to see if the stack is empty
 push(el) — Put the element el on the top of the stack
 pop() — Take the topmost element from the stack
 topEl() — Return the topmost element in the stack without 

removing it

5



Stacks (continued)

6

A series of operations executed on a stack



Stacks (continued)
public class Stack<T> {

private java.util.ArrayList<T> pool = new java.util.ArrayList<T>();
public Stack() {
}
public Stack(int n) {

pool.ensureCapacity(n);
}
public void clear() {

pool.clear();
}
public boolean isEmpty() {

return pool.isEmpty();
}
public T topEl() {

if (isEmpty())
throw new java.util.EmptyStackException();

return pool.get(pool.size()-1);
}

7Array list implementation of a stack

O(    )

O(    )

O(    )

n

1

1



public T pop() {
if (isEmpty())

throw new java.util.EmptyStackException();
return pool.remove(pool.size()-1);

}
public void push(T el) {

pool.add(el);
}
public String toString() {

return pool.toString();
}

}

Stacks (continued)

8

Array list implementation of a stack (continued)

O(    )

O(    )

O(    )

1

1

n



public class LLStack<T> {
private java.util.LinkedList<T> list = new java.util.LinkedList<T>();
public LLStack() {
}
public void clear() {

list.clear();
}
public boolean isEmpty() {

return list.isEmpty();
}
public T topEl() {

if (isEmpty())
throw new java.util.EmptyStackException();

return list.getLast();
}

Stacks (continued)

9

Implementing a stack as a linked list

O(    )

O(    )

O(    )

1

1

1



public T pop() {
if (isEmpty())

throw new java.util.EmptyStackException();
return list.removeLast();

}
public void push(T el) {

list.add(el);
}
public String toString() {

return list.toString();
}

}

Stacks (continued)

10

Implementing a stack as a linked list (continued)

O(    )

O(    )

O(    )

1

1

n



Stacks (continued)

11

A series of operations executed on an abstract stack (a) and the 
stack implemented with an array (b) and with a linked list (c)



Stacks in java.util

12

A list of methods in java.util.Stack; all methods from 
Vector are inherited



Applications of Stack

 Some direct applications:
 Delimiter Matching
 Adding Large Numbers
 Evaluating postfix expressions
 Page-visited history in a Web browser
 Undo sequence in a text editor
 Chain of method calls in the Java Virtual Machine

 Some indirect applications
 Auxiliary data structure for some algorithms
 Component of other data structures

13



Delimiter Matching

 These examples are properly-delimited statements :
 a = b + (c – d ) * (e – f);
 g[10] = h[i[9]] + (j + k) * l;
 while (m < (n[8] + o)) { p = 7; /* initialize p */ r = 6; }

 These examples are statements in which mismatching occurs:
 a = b + (c – d) * (e – f));
 g[10] = h[i[9]] + j + k) * l;
 while (m < (n[8] + o]) { p = 7; /* initialize p */ r = 6; }

14



Delimiter Matching Algorithm



Delimiter Matching

16

Processing the statement s=t[5]+u/(v*(w+y)); with 
the algorithm delimiterMatching()



Delimiter Matching

17

Processing the statement s=t[5]+u/(v*(w+y)); with 
the algorithm delimiterMatching() (continued)



Adding Large Numbers

18

An example of adding numbers 592 and 3,784 using stacks



Application of Stacks: Evaluating Postfix Expressions

(5+9)*2+6*5
 An ordinary arithmetical expression like the above is 

called infix-expression -- binary operators appear in 
between their operands.

 The order of operations evaluation  is determined by 
the precedence rules and parenthesis. 

 When an evaluation order is desired that is different 
from that provided by the precedence, parentheses 
are used to override precedence rules.

19



 Expressions can also be represented using postfix 
notation - where an operator comes after its two 
operands.

 The advantage of postfix notation is that the order of 
operation evaluation is unique without the need for 
precedence rules or parenthesis. 

PostfixInfix
16   2   /16 / 2 
2  14  +  5  * (2 + 14)* 5 
2   14  5  * + 2  +  14 * 5 
6  2  - 5  4  + * (6 – 2) * (5 + 4) 

20
Application of Stacks: Evaluating Postfix Expressions



 The following algorithm uses a stack to evaluate a postfix expressions.

Start with an empty stack
for (each item in the expression) {

if (the item is a number)
Push the number onto the stack

else if (the item is an operator){
Pop two operands from the stack 

Apply the operator to the operands
Push the result onto the stack

}
}
Pop the only one number from the stack – that’s the result of the evaluation

21
Application of Stacks: Evaluating Postfix Expressions



 Example: Consider the postfix expression,  2  10  +  9  6  - /, which is    
(2 + 10) / (9 - 6) in infix, the result of which is 12 / 3 = 4. 

 The following is a trace of the postfix evaluation algorithm for the above.

22
Application of Stacks: Evaluating Postfix Expressions



23

Queues

 A queue is a waiting line that grows by adding 
elements to its end and shrinks by taking elements 
from its front

 A queue is a structure in which both ends are used: 
 One for adding new elements 
 One for removing them

 A queue is an FIFO structure: first in/first out



24

Queues (continued)

 The following operations are needed to properly 
manage a queue:
 clear() — Clear the queue
 isEmpty() — Check to see if the queue is empty
 enqueue(el) — Put the element el at the end of the queue
 dequeue() — Take the first element from the queue
 firstEl() — Return the first element in the queue without 

removing it



25

Queues (continued)

A series of operations executed on a queue



26

Queues (continued)

Two possible configurations in an array implementation 
of a queue when the queue is full



27

Queues (continued)

Array implementation of a queue

O(    )

O(    )

O(    )



28

Queues (continued)

Array implementation of a queue (continued)

O(    )



29

Queues (continued)

Array implementation of a queue (continued)

O(    )

O(    )



public class Queue<T> {
private java.util.LinkedList<T> list = new java.util.LinkedList<T>();
public Queue() {
}
public void clear() {

list.clear();
}
public boolean isEmpty() {

return list.isEmpty();
}
public T firstEl() {

return list.getFirst();
}

30

Queues (continued)

Linked list implementation of a queue

O(    )

O(    )

O(    )



public T dequeue() {
return list.removeFirst();

}
public void enqueue(T el) {

list.addLast(el);
}
public String toString() {

return list.toString();
}

}

31

Queues (continued)

Linked list implementation of a queue (continued)

O(    )

O(    )

O(    )



32

Queues (continued)

 Queuing theory is when various scenarios are 
analyzed and models are built that use queues

A series of operations executed on an abstract queue (a) and the 
queue implemented with an array (b) and with a linked list (c)



33

Queues (continued)

 In queuing theory, various scenarios are analyzed and 
models are built that use queues for processing requests 
or other information in a predetermined sequence (order)



34

Queues (continued)

Bank One example: (a) data for number of arrived customers per 
one-minute interval and (b) transaction time in seconds per customer



35

Queues (continued)

Bank One example: implementation code

class BankSimulation {
static java.util.Random rd = new java.util.Random();
static int Option(int percents[]) {

int i = 0, perc, choice = Math.abs(rd.nextInt()) % 100 + 1;
for (perc = percents[0]; perc < choice; perc += percents[i+1], i++);
return i;

}
public static void main(String args[]) {

int[] arrivals = {15,20,25,10,30};
int[] service = {0,0,0,10,5,10,10,0,15,25,10,15};
int[] clerks = {0,0,0};
int clerksSize = clerks.length;
int customers, t, i, numOfMinutes = 100, x;
double maxWait = 0.0, thereIsLine = 0.0, currWait = 0.0;
Queue<Integer> simulQ = new Queue<Integer>();



36

Queues (continued)

Bank One example: implementation code (continued)

for (t = 1; t <= numOfMinutes; t++) {
System.out.print(" t = " + t);
for (i = 0; i < clerksSize; i++)// after each minute subtract

if (clerks[i] < 60)         // at most 60 seconds from time
clerks[i] = 0;         // left to service the current

else clerks[i] -= 60;       // customer by clerk i;
customers = Option(arrivals);
for (i = 0; i < customers; i++) { // enqueue all new customers

x = Option(service)*10;     // (or rather service time
simulQ.enqueue(x);          // they require);
currWait += x;

}



37

Queues (continued)

Bank One example: implementation code (continued)

// dequeue customers when clerks are available:
for (i = 0; i < clerksSize && !simulQ.isEmpty(); )

if (clerks[i] < 60) {
x = simulQ.dequeue();  // assign more than one customer
clerks[i] += x;        // to a clerk if service time
currWait -= x;        // is still below 60 sec;

}
else i++;

if (!simulQ.isEmpty()) {
thereIsLine++;
System.out.printf(" wait = %.1f", currWait/60.0);
if (maxWait < currWait)

maxWait = currWait;
}
else System.out.print(" wait = 0;");

}



38

Queues (continued)

Bank One example: implementation code (continued)

System.out.println("\nFor " + clerksSize + " clerks, there was a line "
+ thereIsLine/numOfMinutes*100.0 + "% of the time;\n"
+ "maximum wait time was " + maxWait/60.0 + " min.");

}
}



39

Priority Queues

 A priority queue can be assigned to enable a 
particular process, or event, to be executed out of 
sequence without affecting overall system operation 

 In priority queues, elements are dequeued 
according to their priority and their current queue 
position



40

Priority Queues (continued)

 Priority queues can be represented by two variations 
of linked lists:
 All elements are entry ordered
 Order is maintained by putting a new element 

in its proper position according to its priority


	Slide Number 1
	Reading Assignment
	Objectives
	Stacks
	Stacks (continued)
	Stacks (continued)
	Stacks (continued)
	Stacks (continued)
	Stacks (continued)
	Stacks (continued)
	Stacks (continued)
	Stacks in java.util
	Applications of Stack
	Delimiter Matching
	Delimiter Matching Algorithm
	Delimiter Matching
	Delimiter Matching
	Adding Large Numbers
	Application of Stacks: Evaluating Postfix Expressions
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Queues
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Queues (continued)
	Priority Queues
	Priority Queues (continued)

