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Analysis of Recursive Algorithms

 What is a recurrence relation? 

 Forming Recurrence Relations

 Solving Recurrence Relations

 Analysis Of Recursive Factorial method

 Analysis Of Recursive Selection Sort

 Analysis Of Recursive Binary Search 

 Analysis Of Recursive Towers of Hanoi Algorithm 
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What is a recurrence relation?

 A recurrence relation, T(n),  is a recursive function of integer variable n.
 Like all recursive functions, it has both recursive case and base case.
 Example:

 The portion of the definition that does not contain T is called the base 
case of the recurrence relation; the portion that contains T is called the 
recurrent or recursive case.

 Recurrence relations are useful for expressing the running times (i.e., the 
number of basic operations executed) of recursive algorithms
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Forming Recurrence Relations

 For a given recursive method, the base case and the recursive case of its 
recurrence relation correspond directly to the base case and the recursive case 
of the method.

 Example 1: Write the recurrence relation describing the number of 
comparisons carried out for the following method.

 The base case is reached when n = 0.
 The number of comparisons is 1, and hence, T(0) = 1.

 When n > 0,
 The number of comparisons is 1 + T(n-1).

 Therefore the recurrence relation is:

public void f (int n) {
if (n > 0) {

System.out.println(n);
f(n-1);

}
}
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Forming Recurrence Relations

 For a given recursive method, the base case and the recursive case of 
its recurrence relation correspond directly to the base case and the 
recursive case of the method.

 Example 2: Write the recurrence relation describing the number of 
System.out.println statements executed for the following method.

 The base case is reached when n = 0.
 The number of executed System.out.println’s is 0, i.e., T(0) = 0.

 When n > 0,
 The number of executed System.out.println’s is 1 + T(n-1).

 Therefore the recurrence relation is:

public void f (int n) {
if (n > 0) {

System.out.println(n);
f(n-1);

}
}
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Forming Recurrence Relations

 Example 3: Write the recurrence relation describing the number of 
additions carried out for the following method.

 The base case is reached when and hence,
 When n > 1, 
 Hence, the recurrence relation is:

public int g(int n) { 
if (n == 1)

return 2;
else

return 3 * g(n / 2) + g( n / 2) + 5;
}
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Solving Recurrence Relations

 To solve a recurrence relation T(n) we need to derive a 
form of T(n) that is not a recurrence relation. Such a form 
is called a closed form of the recurrence relation.

 There are four methods to solve recurrence relations that 
represent the running time of recursive methods:
 Iteration method (unrolling and summing)
 Substitution method
 Recursion tree method
 Master method

 In this course, we will only use the Iteration method.
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Solving Recurrence Relations - Iteration method 

 Steps:
 Expand the recurrence
 Express the expansion as a summation by plugging the recurrence back 

into itself until you see a pattern. 
 Evaluate the summation

 In evaluating the summation one or more of the following summation 
formulae may be used: 

 Arithmetic series: 

 Geometric Series:

•Special Cases of Geometric Series:

9



Solving Recurrence Relations - Iteration method 

• Harmonic Series:

• Others:
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Analysis Of Recursive Factorial method

• Example 1: Form and solve the recurrence relation 
describing the number of multiplications carried out by 
the factorial method and hence determine its big-O 
complexity:

long factorial (int n) {
if (n == 0) 

return 1;     
else

return n * factorial (n – 1); 
}
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Analysis Of Recursive Towers of Hanoi Algorithm

 The recurrence relation describing the number of times
is executed for the method hanoi

is:

public static void hanoi(int n, char from, char to, char temp){
if (n == 1)

System.out.println(from + " --------> " + to);
else{

hanoi(n - 1, from, temp, to);
System.out.println(from + " --------> " + to);
hanoi(n - 1, temp, to, from);

}
}

the printing statement
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Analysis Of Recursive Towers of Hanoi Algorithm

 The recurrence relation describing the number of times the 
printing statement is executed for the method hanoi and its 
solution is:

13

1 1
( )

2 ( 1) 1 1

2 1 1n

n
T n

T n n

n

=
=  − + >
= − ≥



Analysis Of Recursive Binary Search

 The recurrence relation describing the number of 
for the method is:

public int binarySearch (int target, int[] array, 
int low, int high) {

if (low > high)
return -1;

else {
int middle = (low + high)/2;
if (array[middle] == target)

return middle;
else if(array[middle] < target)

return binarySearch(target, array, middle + 1, high);
else

return binarySearch(target, array, low, middle - 1);
} 

} 

element comparisons
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Analysis Of Recursive Binary Search

 The recurrence relation describing the number of element 
comparisons for the method in the worst case and its 
solution are:
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• Example 2: Form and solve the recurrence relation describing the 
number of element comparisons (x[i] > x[k]) carried out by the 
selection sort method and hence determine its big-O complexity:

Analysis Of Recursive Selection Sort

public static void selectionSort(int[] x) {
selectionSort(x, x.length);}

private static void selectionSort(int[] x, int n) {
int minPos;
if (n > 1) {

maxPos = findMaxPos(x, n - 1);
swap(x, maxPos, n - 1);
selectionSort(x, n - 1);

}
}
private static int findMaxPos (int[] x, int j) {

int k = j;
for(int i = 0; i < j; i++)

if(x[i] > x[k])  k = i;
return k;

}
private static void swap(int[] x, int maxPos, int n) {

int temp=x[n]; x[n]=x[maxPos]; x[maxPos]=temp;
}
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• Example 2: Form and solve the recurrence relation describing the 
number of element comparisons (x[i] > x[k]) carried out by the 
selection sort method and hence determine its big-O complexity:

Analysis Of Recursive Selection Sort
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