
Unit 12

Hashing

King Fahd University of Petroleum & Minerals
College of Computer Science & Engineering

Information & Computer Science Department

 “Data Structures and Algorithms in Java”, 3rd
Edition, Adam Drozdek, Cengage Learning, ISBN
978-9814239233
 Chapter 10

 Section 10.1: Hash Functions
 Section 10.2: Collision Resolution (Except 10.2.3: Bucket

Addressing)
 Section 10.3: Deletion

Reading Assignment

3

Introduction to Hashing & Hashing Techniques

 Review of Searching Techniques

 Introduction to Hashing

 Hash Tables
 Types of Hashing

 Hash Functions
 Applications of Hash Tables

 Problems for which Hash Tables are not suitable

 Collision Resolution Techniques

 Separate Chaining

 Introduction to Collision Resolution using Open Addressing
 Linear Probing
 Quadratic Probing
 Double Hashing
 Rehashing

 Algorithms for insertion, searching, and deletion in Open Addressing

 Separate Chaining versus Open-addressing

3

4

Review of Searching Techniques
4

 Recall the efficiency of searching techniques covered earlier.

 The sequential search algorithm takes time proportional to the
data size, i.e, O(n).

 Binary search improves on liner search reducing the search time
to O(log n).

 With a BST, an O(log n) search efficiency can be obtained; but
the worst-case complexity is O(n).

 To guarantee the O(log n) search time, BST height balancing
is required (i.e., AVL trees).

5

Review of searching Techniques (cont’d)
5

 The efficiency of these search strategies depends on the number of
items in the container being searched.

 Search methods with efficiency independent of data size would be
better.

 Consider the following Java class that describes a student record:

 The id field in this class can be used as a search key for records in
the container.

class StudentRecord {
String name; // Student name
double height; // Student height
long id; // Unique id

}

6

Introduction to Hashing
6

 Suppose that we want to store 10,000 students records (each with a
5-digit ID) in a given container.

· A linked list implementation would take O(n) time.

· A height balanced tree would give O(log n) access time.

· Using an array of size 100,000 would give O(1) access time
but will lead to a lot of space wastage.

 Is there some way that we could get O(1) access without wasting
a lot of space?

 The answer is hashing.

7

 A hash function, h, is a function which transforms a key from a
set, K, into an index in a table of size n:

h: K -> {0, 1, ..., n-2, n-1}

 A key can be a number, a string, a record etc.
 The size of the set of keys, |K|, to be relatively very large.
 It is possible for different keys to hash to the same array location.

 This situation is called collision and the colliding keys are called synonyms.

7

Hash Functions

8

Example 1: Illustrating Hashing

 Use the function f(r) = r.id % 13 to load the following

records into an array of size 13.

985926 1.73Al-Otaibi, Ziyad

970876 1.60Al-Turki, Musab Ahmad Bakeer

980962 1.58Al-Saegh, Radha Mahdi

986074 1.80Al-Shahrani, Adel Saad

970728 1.73Al-Awami, Louai Adnan Muhammad

994593 1.66Al-Amer, Yousuf Jauwad

996321 1.70Al-Helal, Husain Ali AbdulMohsen

8635231.74Al-Khatib, Wasfi Ghassan

8

9

Example 1: Introduction to Hashing (cont'd)
9

0 1 2 3 4 5 6 7 8 9 10 11 12

h(r) = id % 13IDName
6 985926Al-Otaibi, Ziyad
10 970876Al-Turki, Musab Ahmad Bakeer
8 980962Al-Saegh, Radha Mahdi
11 986074Al-Shahrani, Adel Saad
5 970728Al-Awami, Louai Adnan Muhammad
2 994593Al-Amer, Yousuf Jauwad
1 996321Al-Helal, Husain Ali AbdulMohsen
11863523Al-Khatib, Wasfi Ghassan

Wasfi

10

Hash Tables
10

 There are two types of Hash Tables: Open-addressed Hash Tables and Separate-
Chained Hash Tables.

 An Open-addressed Hash Table is a one-dimensional array indexed by

integer values that are computed by an index function called a hash function.

 A Separate-Chained Hash Table is a one-dimensional array of linked lists indexed
by integer values that are computed by an index function called a hash function.

 Hash tables are sometimes referred to as scatter tables..\

 Typical hash table operations are:

· Initialization.
· Insertion.
· Searching
· Deletion.

11

Types of Hashing
11

 There are two types of hashing :
1. Static hashing: In static hashing, the hash function maps
search-key values to a fixed set of locations.

2. Dynamic hashing: In dynamic hashing a hash table can
grow to handle more items. The associated hash function
must change as the table grows.

 The load factor of a hash table is the ratio of the number of keys
in the table to the size of the hash table.
 What do you think will happen when the load factor becomes high?
 With open addressing, the load factor cannot exceed 1. With

chaining, the load factor often exceeds 1.

12

Desired Properties of Hash Functions
12

 A good hash function should:

· Minimize collisions.

· Be easy and quick to compute.

· Distribute key values evenly in the hash table.

· Use all the information provided in the key.

13

Common Hashing Functions
13

1. Division Remainder (using the table size as the divisor)

 Computes hash value from key using the % operator.

 Table size that is a power of 2 like 32 and 1024 should be avoided,
for it leads to more collisions.

 Also, powers of 10 are not good for table sizes when the keys rely
on decimal integers.

 Prime numbers not close to powers of 2 are better table size values.

14

Common Hashing Functions (cont’d)
14

2. Folding
 It involves splitting keys into two or more parts and then combining

the parts to form the hash addresses.

 To map the key 25936715 to a range between 0 and 9999, we can:
· split the number into two as 2593 and 6715 and
· add these two to obtain 9308 as the hash value.

 Very useful if we have keys that are very large.

 Fast and simple especially with bit patterns.

 A great advantage is ability to transform non-integer keys into integer
values.

15

Common Hashing Functions (cont’d)

3. Mid-Square

 The key is squared and the middle part of the result taken as the
hash value.

 To map the key 3121 into a hash table of size 1000, we square it
31212 = 9740641 and extract 406 as the hash value.

 Works well if the keys do not contain a lot of leading or trailing
zeros.

 Non-integer keys have to be preprocessed to obtain corresponding
integer values.

15

16

Common Hashing Functions (cont’d)
16

4. Truncation or Digit/Character Extraction

 Works based on the distribution of digits or characters in the key.

 More evenly distributed digit positions are extracted and used for
hashing purposes.

 For instance, students IDs or ISBN codes may contain common
subsequences which may increase the likelihood of collision.

 Very fast but digits/characters distribution in keys may not be
very even.

17

Common Hashing Functions (cont’d)
17

5. Radix Conversion

 Transforms a key into another number base to obtain the hash value.

 Typically use number base other than base 10 and base 2 to calculate
the hash addresses.

 To map the key 55354 in the range 0 to 9999 using base 11 we have:

5535410 = 3865211

 We may truncate the high-order 3 to yield 8652 as our hash address
within 0 to 9999.

18

Common Hashing Functions (cont’d)
18

6. Use of a Random-Number Generator

 Given a seed as parameter, the method generates a random
number.

 The algorithm must ensure that:

 It always generates the same random value for a given key.

 It is unlikely for two keys to yield the same random value.

 The random number produced can be transformed to produce
a valid hash value.

19

Some Applications of Hash Tables

 Database systems: Specifically, those that require efficient random access. Generally,
database systems try to optimize between two types of access methods: sequential and
random. Hash tables are an important part of efficient random access because they
provide a way to locate data in a constant amount of time.

 Symbol tables: The tables used by compilers to maintain information about symbols
from a program. Compilers access information about symbols frequently. Therefore, it is
important that symbol tables be implemented very efficiently.

 Data dictionaries: Data structures that support adding, deleting, and searching for data.
Although the operations of a hash table and a data dictionary are similar, other data
structures may be used to implement data dictionaries. Using a hash table is particularly
efficient.

 Network processing algorithms: Hash tables are fundamental components of several
network processing algorithms and applications, including route lookup, packet
classification, and network monitoring.

 Browser Cashes: Hash tables are used to implement browser cashes.

19

20

Problems for Which Hash Tables are not Suitable

1. Problems for which data ordering is required.
Because a hash table is an unordered data structure, certain operations are difficult and
expensive. Range queries, proximity queries, selection, and sorted traversals are possible

only if the keys are copied into a sorted data structure. There are hash table implementation
that keep the keys in order, but they are far from efficient.

2. Problems having multidimensional data.

3. Prefix searching especially if the keys are long and of variable-lengths.

4. Problems that have dynamic data:
Open-addressed hash tables are based on 1D-arrays, which are difficult to resize
once they have been allocated. Unless you want to implement the table as a
dynamic array and rehash all of the keys whenever the size changes. This is an
incredibly expensive operation. An alternative is use a separate-chained hash
tables or dynamic hashing.

5. Problems in which the data does not have unique keys.
Open-addressed hash tables cannot be used if the data does not have unique
keys. An alternative is use separate-chained hash tables.

20

21

Exercises
21

1. What in your opinion is the single most important motivation
for the development of hashing schemes while there already are
other techniques that can be used to realize the same
functionality provided by hashing methods?

2. How many storage cells will be wasted in an array
implementation with O(1) access for records of 10,000 students
each with a 7-digit ID number?

3. Must a hash table be implemented using an array? Will an
alternative data structure achieve the same efficiency? If

yes, why? If no, what condition must the data structure satisfy
to ensure the same efficiency as provided by arrays?

4. Which of the techniques for creating hash functions is most
general? Why?

5. Why do prime numbers generally make a good selection for
hash table sizes?

22

Collision Resolution Techniques
22

 There are two broad ways of collision resolution:

1. Separate Chaining:: An array of linked list implementation.

2. Open Addressing: Array-based implementation.

(i) Linear probing (linear search)
(ii) Quadratic probing (nonlinear search)
(iii) Double hashing (uses two hash functions)

23

Separate Chaining
23

 The hash table is implemented as an array of linked lists.

 Inserting an item, r, that hashes at index i is simply insertion into the
linked list at position i.

 Synonyms are chained in the same linked list.

24

Separate Chaining (cont’d)
24

 Retrieval of an item, r, with hash address, i, is simply retrieval from the
linked list at position i.

 Deletion of an item, r, with hash address, i, is simply deleting r from the
linked list at position i.

 Example: Load the keys 23, 13, 21, 14, 7, 8, and 15 , in this order, in a
hash table of size 7 using separate chaining with the hash function: h(key)
= key % 7

h(23) = 23 % 7 = 2
h(13) = 13 % 7 = 6
h(21) = 21 % 7 = 0
h(14) = 14 % 7 = 0 collision
h(7) = 7 % 7 = 0 collision
h(8) = 8 % 7 = 1
h(15) = 15 % 7 = 1 collision

25

Separate Chaining with String Keys
25

 Recall that search keys can be numbers, strings or some other object.
 A hash function for a string s = c0c1c2…cn-1 can be defined as:

hash = (c0 + c1 + c2 + … + cn-1) % tableSize
this can be implemented as:

 Example: The following class describes commodity items:

public static int hash(String key, int tableSize){
int hashValue = 0;
for (int i = 0; i < key.length(); i++){

hashValue += key.charAt(i);
}
return hashValue % tableSize;

}

class CommodityItem {
String name; // commodity name
int quantity; // commodity quantity needed
double price; // commodity price

}

26

Separate Chaining with String Keys (cont’d)
26

 Use the hash function hash to load the following commodity items
into a hash table of size 13 using separate chaining:

onion 1 10.0
tomato 1 8.50
cabbage 3 3.50
carrot 1 5.50
okra 1 6.50
mellon 2 10.0
potato 2 7.50
Banana 3 4.00
olive 2 15.0
salt 2 2.50
cucumber 3 4.50
mushroom 3 5.50
orange 2 3.00

 Solution:

hash(onion) = (111 + 110 + 105 + 111 + 110) % 13 = 547 % 13 = 1
hash(salt) = (115 + 97 + 108 + 116) % 13 = 436 % 13 = 7

hash(orange) = (111 + 114 + 97 + 110 + 103 + 101)%13 = 636 %13 = 12

27

Separate Chaining with String Keys (cont’d) 27

0

1

2

3

4

5

6

7

8

9

10

11

12

onion

okra

mellon

banana

tomato olive

cucumber

mushroom

salt

cabbage

carrot

potato

orange

ItemQtyPriceh(key)
onion110.01

tomato18.5010
cabbage33.50 4
carrot15.50 1

okra16.50 0
mellon210.0 10
potato27.50 0

Banana3 4.0 11
olive215.0 10
salt22.50 7

cucumber34.50 9
mushroom35.50 6
orange23.00 12

28

Separate Chaining with String Keys (cont’d)
28

 Alternative hash functions for a string
s = c0c1c2…cn-1

exist, some are:
 hash = (c0 + 27 * c1 + 729 * c2) % tableSize
 hash = (c0 + cn-1 + s.length()) % tableSize

 hash = %tableSize]'')s.charAt(kk*26[
1().

0
∑

−

=

−+
lengths

k

29

Introduction to Open Addressing

 All items are stored in the hash table itself.
 In addition to the cell data (if any), each cell keeps one of the three states:

EMPTY, OCCUPIED, DELETED.
 While inserting, if a collision occurs, alternative cells are tried until an empty cell

is found.
 Deletion: (lazy deletion): When a key is deleted the slot is marked as DELETED

rather than EMPTY otherwise subsequent searches that hash at the deleted cell
will fail.

 Probe sequence: A probe sequence is the sequence of array indexes that is
followed in searching for an empty cell during an insertion, or in searching for a
key during find or delete operations.

 The most common probe sequences are of the form:
hi(key) = [h(key) + c(i)] % n, for i = 0, 1, …, n-1.

where h is a hash function and n is the size of the hash table
 The function c(i) is required to have the following two properties:

Property 1: c(0) = 0
Property 2: The set of values {c(0) % n, c(1) % n, c(2) % n, . . . ,
c(n-1) % n} must be a permutation of {0, 1, 2,. . ., n – 1}, that is, it must
contain every integer between 0 and n - 1 inclusive.

29

30

Introduction to Open Addressing (cont’d)
30

 The function c(i) is used to resolve collisions.

 To insert item r, we examine array location h0(r) = h(r). If there is a collision,
array locations h1(r), h2(r), ..., hn-1(r) are examined until an empty slot is found.

 Similarly, to find item r, we examine the same sequence of locations in the same
order.

 Note: For a given hash function h(key), the only difference in the open addressing
collision resolution techniques (linear probing, quadratic probing and double
hashing) is in the definition of the function c(i).

 Common definitions of c(i) are:

Collision resolution technique c(i)
Linear probing i

Quadratic probing ±i2

Double hashing i*hp(key)

where hp(key) is another hash function.

31

Introduction to Open Addressing (cont'd)
31

 Advantages of Open addressing:
 All items are stored in the hash table itself. There is

no need for another data structure.
 Open addressing is more efficient storage-wise.

 Disadvantages of Open Addressing:
 The keys of the objects to be hashed must be distinct.
 Dependent on choosing a proper table size.
 Requires the use of a three-state (Occupied, Empty,

or Deleted) flag in each cell.

32

Open Addressing Facts
32

 In general, primes give the best table sizes.

 With any open addressing method of collision resolution,
as the table fills, there can be a severe degradation in the table
performance.

 Load factors between 0.6 and 0.7 are common.

 Load factors > 0.7 are undesirable.

 The search time depends only on the load factor, not on the table size.

 We can use the desired load factor to determine appropriate table
size:

33

Open Addressing: Linear Probing

 c(i) is a linear function in i of the form c(i) = a*i.
 Usually c(i) is chosen as:

c(i) = i for i = 0, 1, . . . , tableSize – 1

 The probe sequences are then given by:
hi(key) = [h(key) + i] % tableSize for i = 0, 1, . . . , tableSize – 1

 For c(i) = a*i to satisfy Property 2, a and n must be
relatively prime.

33

34

Linear Probing (cont’d)
34

Example: Perform the operations given below, in the given order, on an
initially empty hash table of size 13 using linear probing with c(i) = i
and the hash function: h(key) = key % 13:

insert(18), insert(26), insert(35), insert(9), find(15), find(48), delete(35),
delete(40), find(9), insert(64), insert(47), find(35)

 The required probe sequences are given by:
hi(key) = (h(key) + i) % 13 i = 0, 1, 2, . . ., 12

35

a

35

Index Status Value

0 O 26
1 E
2 E
3 E
4 E
5 O 18
6 E
7 E
8 O 47
9 D 35
10 O 9
11 E
12 O 64

Linear Probing (cont’d)

36

Disadvantage of Linear Probing: Primary Clustering
36

• Linear probing is subject to a primary clustering phenomenon.

• Elements tend to cluster around table locations that they originally hash to.

• Primary clusters can combine to form larger clusters. This leads to long probe

sequences and hence deterioration in hash table efficiency.

Example of a primary cluster: Insert keys: 18, 41, 22, 44, 59, 32, 31, 73, in this order, in an
originally empty hash table of size 13, using the hash function h(key) = key % 13 and c(i) = i:
h(18) = 5
h(41) = 2
h(22) = 9
h(44) = 5+1
h(59) = 7
h(32) = 6+1+1
h(31) = 5+1+1+1+1+1
h(73) = 8+1+1+1a

37

Open Addressing: Quadratic Probing

 Quadratic probing eliminates primary clusters.
 c(i) is a quadratic function in i of the form c(i) = a*i2 + b*i. Usually c(i) is

chosen as:
c(i) = i2 for i = 0, 1, . . . , tableSize – 1

or
c(i) = ±i2 for i = 0, 1, . . . , (tableSize – 1) / 2

 The probe sequences are then given by:
hi(key) = [h(key) + i2] % tableSize for i = 0, 1, . . . , tableSize – 1

or
hi(key) = [h(key) ± i2] % tableSize for i = 0, 1, . . . , (tableSize – 1) / 2

 Note for Quadratic Probing:
 Hashtable size should not be an even number; otherwise Property 2 will not be

satisfied.
 Ideally, table size should be a prime of the form 4j+3, where j is an integer. This

choice of table size guarantees Property 2.

37

38

Quadratic Probing (cont’d)
38

 Example: Load the keys 23, 13, 21, 14, 7, 8, and 15, in
this order, in a hash table of size 7 using quadratic probing
with c(i) = ±i2 and the hash function: h(key) = key % 7

 The required probe sequences are given by:
hi(key) = (h(key) ± i2) % 7 i = 0, 1, 2, 3

39

Quadratic Probing (cont’d)
39

h0(23) = (23 % 7) % 7 = 2
h0(13) = (13 % 7) % 7 = 6
h0(21) = (21 % 7) % 7 = 0
h0(14) = (14 % 7) % 7 = 0 collision

h1(14) = (0 + 12) % 7 = 1
h0(7) = (7 % 7) % 7 = 0 collision

h1(7) = (0 + 12) % 7 = 1 collision
h-1(7) = (0 - 12) % 7 = -1

NORMALIZE: (-1 + 7) % 7 = 6 collision
h2(7) = (0 + 22) % 7 = 4

h0(8) = (8 % 7)%7 = 1 collision
h1(8) = (1 + 12) % 7 = 2 collision
h-1(8) = (1 - 12) % 7 = 0 collision
h2(8) = (1 + 22) % 7 = 5

h0(15) = (15 % 7)%7 = 1 collision
h1(15) = (1 + 12) % 7 = 2 collision
h-1(15) = (1 - 12) % 7 = 0 collision
h2(15) = (1 + 22) % 7 = 5 collision
h-2(15) = (1 - 22) % 7 = -3

NORMALIZE: (-3 + 7) % 7 = 4 collision
h3(15) = (1 + 32)%7 = 3

hi(key) = (h(key) ± i2) % 7 i = 0, 1, 2, 3

0 O 21

1 O 14

2 O 23

3 O 15

4 O 7

5 O 8

6 O 13

40

Secondary Clusters
40

• Quadratic probing is better than linear probing because it eliminates primary
clustering.

• However, it may result in secondary clustering: if h(k1) = h(k2) the probing
sequences for k1 and k2 are exactly the same. This sequence of locations is called a

secondary cluster.
• Secondary clustering is less harmful than primary clustering because secondary

clusters do not combine to form large clusters.
• Example of Secondary Clustering: Suppose keys k0, k1, k2, k3, and k4 are

inserted in the given order in an originally empty hash table using quadratic
probing with c(i) = i2. Assuming that each of the keys hashes to the same array
index x. A secondary cluster will develop and grow in size:

41

Double Hashing

 To eliminate secondary clustering, synonyms must have different probe
sequences.

 Double hashing achieves this by having two hash functions that both depend on
the hash key.

 c(i) = i * hp(key) for i = 0, 1, . . . , tableSize – 1
where hp (or h2) is another hash function.

 The probing sequence is:
hi(key) = [h(key) + i*hp(key)]% tableSize for i = 0, 1, . . . , tableSize – 1

 The function c(i) = i*hp(r) satisfies Property 2 provided hp(r) and tableSize are
relatively prime.

 To guarantee Property 2, tableSize must be a prime number.

 Common definitions for hp are :
 hp(key) = 1 + key % (tableSize - 1)
 hp(key) = q - (key % q) where q is a prime less than tableSize
 hp(key) = q*(key % q) where q is a prime less than tableSize

41

42

Double Hashing (cont'd)

Performance of Double hashing:
 Much better than linear or quadratic probing because it eliminates both

primary and secondary clustering.
 BUT requires a computation of a second hash function hp.

Example: Load the keys 18, 26, 35, 9, 64, 47, 96, 36, and 70 in this order,
in an

empty hash table of size 13
(a) using double hashing with the first hash function: h(key) = key % 13

and the second hash function: hp(key) = 1 + key % 12
(b) using double hashing with the first hash function: h(key) = key % 13

and the second hash function: hp(key) = 7 - key % 7
Show all computations.

42

43

Double Hashing (cont’d)

h0(18) = (18%13)%13 = 5
h0(26) = (26%13)%13 = 0
h0(35) = (35%13)%13 = 9
h0(9) = (9%13)%13 = 9 collision

hp(9) = 1 + 9%12 = 10
h1(9) = (9 + 1*10)%13 = 6

h0(64) = (64%13)%13 = 12
h0(47) = (47%13)%13 = 8
h0(96) = (96%13)%13 = 5 collision

hp(96) = 1 + 96%12 = 1
h1(96) = (5 + 1*1)%13 = 6 collision
h2(96) = (5 + 2*1)%13 = 7

h0(36) = (36%13)%13 = 10
h0(70) = (70%13)%13 = 5 collision

hp(70) = 1 + 70%12 = 11
h1(70) = (5 + 1*11)%13 = 3

43

hi(key) = [h(key) + i*hp(key)]% 13

h(key) = key % 13

hp(key) = 1 + key % 12

44

Double Hashing (cont'd)

h0(18) = (18%13)%13 = 5
h0(26) = (26%13)%13 = 0
h0(35) = (35%13)%13 = 9
h0(9) = (9%13)%13 = 9 collision

hp(9) = 7 - 9%7 = 5
h1(9) = (9 + 1*5)%13 = 1

h0(64) = (64%13)%13 = 12
h0(47) = (47%13)%13 = 8
h0(96) = (96%13)%13 = 5 collision

hp(96) = 7 - 96%7 = 2
h1(96) = (5 + 1*2)%13 = 7

h0(36) = (36%13)%13 = 10
h0(70) = (70%13)%13 = 5 collision

hp(70) = 7 - 70%7 = 7
h1(70) = (5 + 1*7)%13 = 12 collision
h2(70) = (5 + 2*7)%13 = 6

44

hi(key) = [h(key) + i*hp(key)]% 13

h(key) = key % 13

hp(key) = 7 - key % 7

45

Rehashing
45

 As noted before, with open addressing, if the hash tables
become too full, performance can suffer a lot.

 So, what can we do?
 We can double the hash table size, modify the hash

function, and re-insert the data.
 More specifically, the new size of the table will be the

first prime that is more than twice as large as the old
table size.

46

Implementation of Open Addressing

public class OpenScatterTable extends AbstractHashTable {
protected Entry array[];
protected static final int EMPTY = 0;
protected static final int OCCUPIED = 1;
protected static final int DELETED = 2;

protected static final class Entry {
public int state = EMPTY;
public Comparable object;
// …

}

public OpenScatterTable(int size) {
array = new Entry[size];
for(int i = 0; i < size; i++)

array[i] = new Entry();
}
// …

}

46

47

Implementation of Open Addressing (Con’t.)

/* finds the index of the first unoccupied slot
in the probe sequence of obj */

protected int findIndexUnoccupied(Comparable obj){
int hashValue = h(obj);
int tableSize = getLength();
int indexDeleted = -1;
for(int i = 0; i < tableSize; i++){

int index = (hashValue + c(i)) % tableSize;
if(array[index].state == OCCUPIED

&& obj.equals(array[index].object))
throw new IllegalArgumentException(

"Error: Duplicate key");

else if(array[index].state == EMPTY ||
(array[index].state == DELETED &&

obj.equals(array[index].object)))
return indexDeleted ==-1?index:indexDeleted;

else if(array[index].state == DELETED &&
indexDeleted == -1)
indexDeleted = index;

}
if(indexDeleted != -1) return indexDeleted;

throw new IllegalArgumentException(
"Error: Hash table is full");

}

47

48

Implementation of Open Addressing (Con’t.)
protected int findObjectIndex(Comparable obj){

int hashValue = h(obj);
int tableSize = getLength();

for(int i = 0; i < tableSize; i++){
int index = (hashValue + c(i)) % tableSize;
if(array[index].state == EMPTY

|| (array[index].state == DELETED
&& obj.equals(array[index].object)))

return -1;
else if(array[index].state == OCCUPIED

&& obj.equals(array[index].object))
return index;

}
return -1;

}

public Comparable find(Comparable obj){
int index = findObjectIndex(obj);
if(index >= 0)return array[index].object;
else return null;

}

48

49

Implementation of Open Addressing (Con’t.)

public void insert(Comparable obj){
if(count == getLength()) throw new ContainerFullException();
else {

int index = findIndexUnoccupied(obj);
// throws exception if an UNOCCUPIED slot is not found
array[index].state = OCCUPIED;
array[index].object = obj;
count++;

}
}

public void withdraw(Comparable obj){
if(count == 0) throw new ContainerEmptyException();
int index = findObjectIndex(obj);
if(index < 0)

throw new IllegalArgumentException("Object not found");
else {

array[index].state = DELETED;
// lazy deletion: DO NOT SET THE LOCATION TO null
count--;

}
}

49

50

Separate Chaining versus Open-addressing
50

Separate Chaining has several advantages over open addressing:
 Collision resolution is simple and efficient.
 The hash table can hold more elements without the large performance

deterioration of open addressing (The load factor can be 1 or greater)
 The performance of chaining declines much more slowly than open

addressing.
 Deletion is easy - no special flag values are necessary.
 Table size need not be a prime number.
 The keys of the objects to be hashed need not be unique.
Disadvantages of Separate Chaining:
 It requires the implementation of a separate data structure for chains,

and code to manage it.
 The main cost of chaining is the extra space required for the linked

lists.
 For some languages, creating new nodes (for linked lists) is expensive

and slows down the system.

51

Exercises
51

1. Given that,
c(i) = a*i,

for c(i) in linear probing, we discussed that this equation satisfies Property 2
only when a and n are relatively prime. Explain what the requirement of being
relatively prime means in simple plain language.

2. Consider the general probe sequence,
hi (r) = (h(r) + c(i))% n.

Are we sure that if c(i) satisfies Property 2, then hi(r) will cover all n hash
table locations, 0,1,...,n-1? Explain.

3. Suppose you are given k records to be loaded into a hash table of size n, with
k < n using linear probing. Does the order in which these records are loaded

matter for retrieval and insertion? Explain.

4. A prime number is always the best choice of a hash table size. Is this statement
true or false? Justify your answer either way.

52

Exercises
52

5. If a hash table is 25% full what is its load factor?

6. Given that,
c(i) = i2,

for c(i) in quadratic probing, we discussed that this equation
does not satisfy Property 2, in general. What cells are missed by
this probing formula for a hash table of size 17? Characterize
using a formula, if possible, the cells that are not examined by
using this function for a hash table of size n.

7. It was mentioned in this session that secondary clusters are less
harmful than primary clusters because the former cannot

combine
to form larger secondary clusters. Use an appropriate hash table
of records to exemplify this situation.

	Slide Number 1
	Reading Assignment
	Introduction to Hashing & Hashing Techniques
	Review of Searching Techniques
	Review of searching Techniques (cont’d)
	Introduction to Hashing
	Hash Functions
	Example 1: Illustrating Hashing
	Example 1: Introduction to Hashing (cont'd)
	Hash Tables
	Types of Hashing
	Desired Properties of Hash Functions
	Common Hashing Functions
	Common Hashing Functions (cont’d)
	Common Hashing Functions (cont’d)
	Common Hashing Functions (cont’d)
	Common Hashing Functions (cont’d)
	Common Hashing Functions (cont’d)
	Some Applications of Hash Tables
	Problems for Which Hash Tables are not Suitable
	Exercises
	Collision Resolution Techniques
	Separate Chaining
	Separate Chaining (cont’d)
	Separate Chaining with String Keys
	Separate Chaining with String Keys (cont’d)
	Separate Chaining with String Keys (cont’d)
	Separate Chaining with String Keys (cont’d)
	Introduction to Open Addressing
	Introduction to Open Addressing (cont’d)
	Introduction to Open Addressing (cont'd)
	Open Addressing Facts
	Open Addressing: Linear Probing
	Linear Probing (cont’d)
	a
	Disadvantage of Linear Probing: Primary Clustering
	Open Addressing: Quadratic Probing
	Quadratic Probing (cont’d)
	Quadratic Probing (cont’d)
	Secondary Clusters
	Double Hashing
	Double Hashing (cont'd)
	Double Hashing (cont’d)
	Double Hashing (cont'd)
	Rehashing
	Implementation of Open Addressing
	Implementation of Open Addressing (Con’t.)
	Implementation of Open Addressing (Con’t.)
	Implementation of Open Addressing (Con’t.)
	Separate Chaining versus Open-addressing
	Exercises
	Exercises

