
Unit 6

Analysis of Recursive Algorithms

King Fahd University of Petroleum & Minerals
College of Computer Science & Engineering

Information & Computer Science Department

Reading Assignment

 This set of slides.

Analysis of Recursive Algorithms

 What is a recurrence relation?

 Forming Recurrence Relations

 Solving Recurrence Relations

 Analysis Of Recursive Factorial method

 Analysis Of Recursive Selection Sort

 Analysis Of Recursive Binary Search

 Analysis Of Recursive Towers of Hanoi Algorithm

3

What is a recurrence relation?

 A recurrence relation, T(n), is a recursive function of integer variable n.
 Like all recursive functions, it has both recursive case and base case.
 Example:

 The portion of the definition that does not contain T is called the base
case of the recurrence relation; the portion that contains T is called the
recurrent or recursive case.

 Recurrence relations are useful for expressing the running times (i.e., the
number of basic operations executed) of recursive algorithms

4

Forming Recurrence Relations

 For a given recursive method, the base case and the recursive case of its
recurrence relation correspond directly to the base case and the recursive case
of the method.

 Example 1: Write the recurrence relation describing the number of
comparisons carried out for the following method.

 The base case is reached when n = 0.
 The number of comparisons is 1, and hence, T(0) = 1.

 When n > 0,
 The number of comparisons is 1 + T(n-1).

 Therefore the recurrence relation is:

public void f (int n) {
if (n > 0) {

System.out.println(n);
f(n-1);

}
}

1 0
()

(1) 1 0
n

T n
T n n

=
=  − + >

5

Forming Recurrence Relations

 For a given recursive method, the base case and the recursive case of
its recurrence relation correspond directly to the base case and the
recursive case of the method.

 Example 2: Write the recurrence relation describing the number of
System.out.println statements executed for the following method.

 The base case is reached when n = 0.
 The number of executed System.out.println’s is 0, i.e., T(0) = 0.

 When n > 0,
 The number of executed System.out.println’s is 1 + T(n-1).

 Therefore the recurrence relation is:

public void f (int n) {
if (n > 0) {

System.out.println(n);
f(n-1);

}
}

0 0
()

(1) 1 0
n

T n
T n n

=
=  − + >

6

Forming Recurrence Relations

 Example 3: Write the recurrence relation describing the number of
additions carried out for the following method.

 The base case is reached when and hence,
 When n > 1,
 Hence, the recurrence relation is:

public int g(int n) {
if (n == 1)

return 2;
else

return 3 * g(n / 2) + g(n / 2) + 5;
}

7

1n = (1) 0T =
() 2 (/ 2) 2T n T n= +

0 1
()

2 2 1
2

n
T n nT n

=
=    + >   

Solving Recurrence Relations

 To solve a recurrence relation T(n) we need to derive a
form of T(n) that is not a recurrence relation. Such a form
is called a closed form of the recurrence relation.

 There are four methods to solve recurrence relations that
represent the running time of recursive methods:
 Iteration method (unrolling and summing)
 Substitution method
 Recursion tree method
 Master method

 In this course, we will only use the Iteration method.

8

Solving Recurrence Relations - Iteration method

 Steps:
 Expand the recurrence
 Express the expansion as a summation by plugging the recurrence back

into itself until you see a pattern.
 Evaluate the summation

 In evaluating the summation one or more of the following summation
formulae may be used:

 Arithmetic series:

 Geometric Series:

•Special Cases of Geometric Series:

9

Solving Recurrence Relations - Iteration method

• Harmonic Series:

• Others:

10

Analysis Of Recursive Factorial method

• Example 1: Form and solve the recurrence relation
describing the number of multiplications carried out by
the factorial method and hence determine its big-O
complexity:

long factorial (int n) {
if (n == 0)

return 1;
else

return n * factorial (n – 1);
}

11

0 0
()

(1) 1 0
0

n
T n

T n n
n n

=
=  − + >
= ≥

Analysis Of Recursive Towers of Hanoi Algorithm

 The recurrence relation describing the number of times
is executed for the method hanoi

is:

public static void hanoi(int n, char from, char to, char temp){
if (n == 1)

System.out.println(from + " --------> " + to);
else{

hanoi(n - 1, from, temp, to);
System.out.println(from + " --------> " + to);
hanoi(n - 1, temp, to, from);

}
}

the printing statement

12

Analysis Of Recursive Towers of Hanoi Algorithm

 The recurrence relation describing the number of times the
printing statement is executed for the method hanoi and its
solution is:

13

1 1
()

2 (1) 1 1

2 1 1n

n
T n

T n n

n

=
=  − + >
= − ≥

Analysis Of Recursive Binary Search

 The recurrence relation describing the number of
for the method is:

public int binarySearch (int target, int[] array,
int low, int high) {

if (low > high)
return -1;

else {
int middle = (low + high)/2;
if (array[middle] == target)

return middle;
else if(array[middle] < target)

return binarySearch(target, array, middle + 1, high);
else

return binarySearch(target, array, low, middle - 1);
}

}

element comparisons

14

Analysis Of Recursive Binary Search

 The recurrence relation describing the number of element
comparisons for the method in the worst case and its
solution are:

15

()2

0 0
() 1() 1 1 (assuming 2 -1)

2
log 1 0

k

n
T n nT n n

n n

=
=  −

+ ≥ =
= + ≥

• Example 2: Form and solve the recurrence relation describing the
number of element comparisons (x[i] > x[k]) carried out by the
selection sort method and hence determine its big-O complexity:

Analysis Of Recursive Selection Sort

public static void selectionSort(int[] x) {
selectionSort(x, x.length);}

private static void selectionSort(int[] x, int n) {
int minPos;
if (n > 1) {

maxPos = findMaxPos(x, n - 1);
swap(x, maxPos, n - 1);
selectionSort(x, n - 1);

}
}
private static int findMaxPos (int[] x, int j) {

int k = j;
for(int i = 0; i < j; i++)

if(x[i] > x[k]) k = i;
return k;

}
private static void swap(int[] x, int maxPos, int n) {

int temp=x[n]; x[n]=x[maxPos]; x[maxPos]=temp;
}

16

• Example 2: Form and solve the recurrence relation describing the
number of element comparisons (x[i] > x[k]) carried out by the
selection sort method and hence determine its big-O complexity:

Analysis Of Recursive Selection Sort
17

()

0 1
()

(1) 1 1

1
1

2

n
T n

T n n n

n n
n

=
=  − + − >

−
= ≥

	Slide Number 1
	Reading Assignment
	Analysis of Recursive Algorithms
	What is a recurrence relation?
	Forming Recurrence Relations
	Forming Recurrence Relations
	Forming Recurrence Relations
	Solving Recurrence Relations
	Solving Recurrence Relations - Iteration method
	Solving Recurrence Relations - Iteration method
	Analysis Of Recursive Factorial method
	Analysis Of Recursive Towers of Hanoi Algorithm
	Analysis Of Recursive Towers of Hanoi Algorithm
	Analysis Of Recursive Binary Search
	Analysis Of Recursive Binary Search
	Analysis Of Recursive Selection Sort
	Analysis Of Recursive Selection Sort

