
Unit 8

Balanced Trees, AVL Trees and Heaps

King Fahd University of Petroleum & Minerals
College of Computer Science & Engineering

Information & Computer Science Department

 “Data Structures and Algorithms in Java”, 3rd Edition,
Adam Drozdek, Cengage Learning, ISBN 978-
9814239233
 Chapter 6 Sections 7, 9 and 10.

Reading Assignment

Objectives

Discuss the following topics:
 Balancing a Tree
 Rotations
 DSW Algorithms
 AVL Trees
 Heaps
 Polish Notation and Expression Trees

Balancing a Tree

 A binary tree is height-balanced or balanced if the
difference in height of both subtrees of any node in the
tree is either zero or one

 A tree is considered perfectly balanced if it is
balanced and all leaves are to be found on one level or
two levels

Balancing a Tree

Figure 6-34 Different binary search trees with the same information

Balancing a Tree

Figure 6-35 Maximum number of nodes in binary trees of
different heights

void balance (T data[], int first, int last) {

if (first <= last) {

int middle = (first + last)/2;

insert(data[middle]); // into the BST

balance(data,first,middle-1);

balance(data,middle+1,last);

}

}

Balancing a Tree Using an Array

Balancing a Tree (continued)

Figure 6-36 Creating a binary search tree from an ordered array

Rotations

 A rotation is a process of switching children and parents among
two or three adjacent nodes.

 Single right rotation:
• The left child x of a node y becomes y's parent.
• y becomes the right child of x.
• The right child T2 of x, if any, becomes the left child of y.

x

T1 T2

y

T3

a right rotation of x about y

y

T3T2

x

T1

9

Rotations
 Single left rotation:

• The right child y of a node x becomes x's parent.
• x becomes the left child of y.
• The left child T2 of y, if any, becomes the right child of x.

y

T3T2

x

T1

a left rotation of y about x

x

T1 T2

y

T3

10

BST ordering property after a rotation
 A rotation does not affect the ordering property of a BST

(Binary Search Tree).

y

T3T2

x

T1

x

T1 T2

y

T3

a right rotation of x about y

BST ordering property requirement: BST ordering property requirement:
T1 < x < y T1 < x < y
x < T2 < y Similar x < T2 < y
x < y < T3 x < y < T3

• Similarly for a left rotation.

11

Single Right Rotation Implementation (example)
12

Single Right Rotation Implementation (example) contd
13

Single Right Rotation Implementation (example) contd
14

Single Right Rotation Implementation (example) contd
15

Single Right Rotation Implementation (example) contd
16

Single Right Rotation Implementation (example) contd
17

Single Right Rotation Implementation (example) contd
18

Single Right Rotation Implementation (example) contd
19

Single Right Rotation Implementation (example) contd
20

Single Right Rotation Implementation (example) contd
21

Algorithm DSW
createBackbone(root, n);
createPerfectTree(n);

End Algorithm

DSW Algorithm

Algorithm createBackbone

Algorithm createBackbone

Figure 6-38 Transforming a binary search tree into a backbone

Algorithm createPerfectTree

Algorithm createPerfectTree

Figure 6-39 Transforming a backbone into a perfectly balanced tree

AVL Trees

 An AVL tree is a binary search tree with a height balance property:
• For each node v, the heights of the subtrees of v differ by at most 1.

 A subtree of an AVL tree is also an AVL tree.
 For each node of an AVL tree:

Balance factor = height(right subtree) - height(left subtree)

 An AVL node can have a balance factor of -1, 0, or 1.
 Determine whether the trees below are AVL trees or not.

3

1

2

4

10

13

7

3

1

2

10

13

7

27

Why AVL Trees?

 Insertion or deletion in an ordinary Binary Search Tree
can cause large imbalances.

 In the worst case searching an imbalanced Binary
Search Tree is O()

 An AVL tree is rebalanced after each insertion or
deletion.
• The height-balance property ensures that the height of an AVL

tree with n nodes is O().
• Searching, insertion, and deletion are all O().

28

n

log n
log n

Balancing an AVL Tree

 An insertion or deletion may cause an imbalance in an AVL tree.
 The deepest node, which is an ancestor of a deleted or an inserted node,

and whose balance factor has changed to -2 or +2 requires rotation to
rebalance the tree.

 Balance is restored using a single rotation or a double rotation
 Single right and left rotations are same as before.
 A double right-left rotation is a right rotation followed by a left rotation.
 A double left-right rotation is a left rotation followed by a right rotation.

45

40

78

50 -1

0

-1 0 45

40

78

50-2

-1

-2 0

350

Insert 35

Deepest unbalanced node

29

Double Right-Left Rotation

z

T4T3

y

T2

x

T1y

T3T2

z

T4

x

T1

z

T4T3

x

T1

y

T2

right rotation of y about z

deepest unbalanced node

left rotation of Y about X
Note: First pivot
is the right child
of the deepest
unbalanced
node; second
pivot is the
deepest
unbalanced
node

30

Double Left-Right Rotation

w

T2 T3

v

T1

x

T4
v

T1 T2

w

T3

x

T4

x

T4T3

v

T1

w

T2

left rotation of w about v

deepest unbalanced node

left rotation of W about X
Note: First pivot
is the left child
of the deepest
unbalanced
node; second
pivot is the
deepest
unbalanced
node

31

When to do Which Rotation

-1

-2

+1

-2

-1 +1

+2+2

Single
right
rotation

Double
left-right
rotation

Single
left
rotation

Double
right-left
rotation

32

Insertion

 Insert using a BST insertion algorithm.
 Rebalance the tree if an imbalance occurs.
 An imbalance occurs if a node's balance factor changes from -1 to -2

or from+1 to +2.
 Rebalancing is done at the deepest or lowest unbalanced ancestor of

the inserted node.

 There are three insertion cases:
1. Insertion that does not cause an imbalance.

2. Same side (left-left or right-right) insertion that causes an imbalance.
 Requires a single rotation to rebalance.

3. Opposite side (left-right or right-left) insertion that causes an imbalance.
 Requires a double rotation to rebalance.

33

Insertion: case 1

 Example: An insertion that does not cause an imbalance.

Insert 14

34

Insertion: case 2

 Case 2a: The lowest node (with a balance factor of -2) had a taller
left-subtree and the insertion was on the left-subtree of its left child.

 Requires single right rotation to rebalance.

Insert 3

right rotation, with node
10 as pivot

-2

-1

35

Insertion: case 2 (contd)

 Case 2b: The lowest node (with a balance factor of +2) had a taller
right-subtree and the insertion was on the right-subtree of its right
child.

 Requires single left rotation to rebalance.

Insert 45
left rotation, with node 30
as the pivot

+2

+1

36

Insertion: case 3

 Case 3a: The lowest node (with a balance factor of -2) had a taller
left-subtree and the insertion was on the right-subtree of its left child.

 Requires a double left-right rotation to rebalance.

Insert 7

left rotation, with node 5
as the pivot

right rotation, with node 10
as the pivot

-2

+1

37

Insertion: case 3 (contd)

 Case 3b: The lowest node (with a balance factor of +2) had a taller
right-subtree and the insertion was on the left-subtree of its right
child.

 Requires a double right-left rotation to rebalance.

Insert 15

right rotation, with node 16
as the pivot

left rotation, with node 9
as the pivot

+2

-1

38

Deletion

 Delete by a BST deletion by copying algorithm.
 Rebalance the tree if an imbalance occurs.
 There are three deletion cases:

1. Deletion that does not cause an imbalance.
2. Deletion that requires a single rotation to rebalance.
3. Deletion that requires two or more rotations to rebalance.

 Deletion case 1 example:

Delete 14

39

Deletion: case 2 examples

Delete 40
right rotation, with node 35
as the pivot

40

Deletion: case 2 examples (contd)

Delete 32
left rotation, with node 44
as the pivot

41

Deletion: case 3 examples

Delete 40

0

right rotation, with node 35
as the pivot

right rotation, with
node 30 as the pivot

42

Binary Heaps

 What is a Binary Heap?

 Array representation of a Binary Heap

 MinHeap implementation

 Operations on Binary Heaps:
enqueue
dequeue
deleting an arbitrary key
changing the priority of a key

 Building a binary heap
• top down approach
• bottom up approach

 Heap as a priority queue

43

What is a Binary Heap
 A particular kind of binary tree, called a heap, has two

properties:
 The value of each node is greater than or

equal to the values stored in each of its children
 The tree is perfectly balanced, and the leaves in the last level

are all in the leftmost positions
 These two properties define a max heap
 If “greater” in the first property is replaced with “less,”

then the definition specifies a min heap
All levels except the bottom one
must be fully populated with nodes

All missing nodes, if any, must be
on the right side of the lowest level

MinHeap and non-MinHeap examples

21

24

65 26 32

31 19

16

68

13

21

6

65 26 32

31 19

16

68

13

21

24

65 26 32

31 19

16

68

13

21

24

65 26 32

31 19

16

13

45

MinHeap and non-MinHeap examples

21

24

65 26 32

31 19

16

68

13

A MinHeap

Violates MinHeap property
21>6

21

6

65 26 32

31 19

16

68

13

Not a Heap

21

24

65 26 32

31 19

16

68

13

Violates heap structural property

Not a Heap

21

24

65 26 32

31 19

16

13

Violates heap structural property

Not a Heap

46

MaxHeap and non-MaxHeap examples

65

24

15 20 31

32 23

46

25

68

65

67

15 20 31

32 23

46

25

68

50

24

15 20 25

31 19

40

38

70

21

19

2 5 15

18 10

16

30

47

MaxHeap and non-MaxHeap examples

65

24

15 20 31

32 23

46

25

68

A MaxHeap

Violates MaxHeap property
65 < 67

Violates heap structural property Violates heap structural property

Not a Heap

65

67

15 20 31

32 23

46

25

68

Not a Heap
50

24

15 20 25

31 19

40

38

70

21

19

2 5 15

18 10

16

30Not a Heap

48

Array Representation of a Binary Heap

 A heap is a dynamic data structure that is represented and
manipulated more efficiently using an array.

 Since a heap is a complete binary tree, its node values can be
stored in an array, without any gaps, in a breadth-first order,
where:

Value(node i+1) array[i], for i > 0

21

24

65 26 32

31 19

16

68

13

32266568193124162113
9876543210

• The root is array[0]
• The parent of array[i] is array[(i – 1)/2], where i > 0
• The left child, if any, of array[i] is array[2i+1].
• The right child, if any, of array[i] is array[2i+2].

49

Array Representation of a Binary Heap (contd.)

 We shall use an implementation in which the heap
elements are stored in an array starting at index 1.

Value(node i) array[i] , for i > 1

21

24

65 26 32

31 19

16

68

13

32266568193124162113
9876543210 10

• The root is array[1].
• The parent of array[i] is array[i/2], where i > 1
• The left child, if any, of array[i] is array[2i].
• The right child, if any, of array[i] is array[2i+1].

50

Percolate Up
 In a MinHeap, if the key at a node, other than the root, becomes

less than its parent, the heap property can be restored by
swapping the current node and its parent, repeating this process
for the parent if necessary, until
 the key at the node is greater than or equal to that of the parent.
 we reach the root.

Procedure percolateUp
Input: H[1..n], i where 1 ≤ i ≤ n.
Output: H, where no node is less than its parent on the path from
node i to the root.
done = false;
while (!done && (i != 1)) {

if H[i].key < H[i/2].key
swap(H[i],H[i/2]);

else
done = true;

i := i/2;
}

What is the complexity of
percolateUp?

51

Percolate Down

 In a MinHeap, if the value at a node becomes greater than the key
of any of its children, the heap property can be restored by
swapping the current node and the child with minimum key value,
repeating this process if necessary until
 the key at the node is less than or equal to the keys of both children.
 we reach a leaf.

Procedure percolateDown
Input: H[1..n], i where 1 ≤ i ≤ n.
Output: H[i] is percolated down, if needed, so that it’s not

greater than its children.
done = false;
while ((2*i <= n) && !done) {

i = 2*i;
if ((i+1 ≤ n) and (H[i+1].key < H[i].key)) i = i+1;
if (H[i/2].key > H[i].key)

swap(H[i],H[i/2]);
else

done := true;
}

What is the complexity of
percolateDown?

52

MinHeap enqueue

 The pseudo code algorithm for enqueing a key in a
MinHeap is:

Algorithm enqueue
Input: A heap H[1..n] & a heap element x.
Output: A new heap H[1..n+1] with x

being one of its elements.
1. if (Heap is full) throw an exception;
2. n = n + 1;
3. H[n] = x;
4. percolateUp(H, n);

 Thus, the steps for enqueue are:
1. Enqueue the key at the end of the heap.
2. As long as the heap order property is violated, percolate up.

What is the complexity of
enqueue method?

53

MinHeap Insertion Example

21

24

65 26 32

31 19

16

68

13
Insert 18 21

24

65 26 32

31 19

16

68

13

18

Percolate up

21

24

65 26 32

18 19

16

68

13

31

Percolate up18

24

65 26 32

21 19

16

68

13

31

54

Deleting an Arbitrary Key

Algorithm Delete
Input: A nonempty heap H[1..n] and i where

1 ≤ i ≤ n.
Output: H[1..n-1] after H[i] is removed.

1. if (Heap is empty) throw an exception
2. x = H[i]; y = H[n];
3. n := n – 1;
4. if i == n+1 then return; // deleting last node
5. H[i] = y;
6. if y.key <= x.key then
7. percolateUp(H, i);
8. else percolateDown(H, i);

• What about dequeueMin()?

What is the complexity of
Delete method?

55

Example

21

24

65 26 32

31 62

60

68

13

• Delete 68
• Delete 13

56

Changing the priority of a key

There are three possibilities when the priority of a key x is changed:
1. The heap property is not violated.
2. The heap property is violated and x has to be percolated up to restore the heap property.
3. The heap property is violated and x has to be percolated down to restore the heap property.
Example:

57

Building a heap (top down)

 A heap is built top-down by inserting one key at a time in an initially empty heap.
 After each key insertion, if the heap property is violated, it is restored by percolating

the inserted key upward.

The algorithm is:

for(int i=1; i <= heapSize; i++){
read key;
binaryHeap.enqueue(key);

}

Example: Insert the keys 4, 6, 10, 20, and 8 in this order in an originally empty max-heap

What is the complexity of
BuildHeap top-down?

58

Example: Insert the keys 4, 6, 10, 20, and 8 in this order in an
originally empty max-heap

Building a heap (top down)
59

Converting an array into a Binary heap
(Building a heap bottom-up)

 Robert Floyd developed an algorithm to convert an array into a
binary heap as follows:

1. Start at the level containing the last non-leaf node (i.e., array[n/2],
where n is the array size).

2. Make the subtree rooted at the last non-leaf node into a heap by
invoking percolateDown.

3. Move in the current level from right to left, making each subtree,
rooted at each encountered node, into a heap by invoking percolateDown.

4. If the levels are not finished, move to a lower level then go to step 3.

 The above algorithm can be refined to the following method of the
BinaryHeap class:

 BuildHeapBottomUp runs in O(n) time.

private void buildHeapBottomUp()
{
for(int i = count / 2; i >= 1; i--)

percolateDown(i);
}

60

Converting an array into a MinHeap (Example)

29

65

13 26 31

32 19

68

16

70

31261316193265682970

61

Heap Applications: Priority Queue

 A heap can be used as the underlying implementation of a priority queue.
 A priority queue is a data structure in which the items to be inserted have

associated priorities.
 Items are withdrawn from a priority queue in order of their priorities,

starting with the highest priority item first.
 Priority queues are often used in resource management, simulations, and

in the implementation of some algorithms (e.g., some graph algorithms,
some backtracking algorithms).

 Several data structures can be used to implement priority queues. Below
is a comparison of some:

Dequeue MaxFind MaxEnqueueData structure

O(n)O(n)O(1)Unsorted List

O(1)O(1)O(n)Sorted List

O(log n)O(log n)O(log n)AVL Tree

O(log n)O(1)O(log n)MaxHeap

62

Polish Notation and Expression Trees

 Polish notation is a special notation for propositional
logic that eliminates all parentheses from formulas

 The compiler rejects everything that is not essential to
retrieve the proper meaning of formulas rejecting it as
“syntactic sugar”

Polish Notation and Expression Trees

Figure 6-59 Examples of three expression trees and results
of their traversals

Operations on Expression Trees

Figure 6-60 An expression tree

Operations on Expression Trees

Figure 6-61 Tree transformations for differentiation of
multiplication and division

Summary

 A tree is a data type that consists of nodes and arcs.
 The root is a node that has no parent; it can have only

child nodes.
 Each node has to be reachable from the root through a

unique sequence of arcs, called a path.
 An orderly tree is where all elements are stored

according to some predetermined criterion of ordering.

Summary (continued)

 A binary tree is a tree whose nodes have two children
(possibly empty), and each child is designated as either
a left child or a right child.

 A decision tree is a binary tree in which all nodes have
either zero or two nonempty children.

 Tree traversal is the process of visiting each node in the
tree exactly one time.

Summary (continued)

 An AVL tree is one in which the height of the left and
right subtrees of every node differ by at most one.

 Polish notation is a special notation for propositional
logic that eliminates all parentheses from formulas.

	Slide Number 1
	Reading Assignment
	Objectives
	Balancing a Tree
	Balancing a Tree
	Balancing a Tree
	Balancing a Tree Using an Array
	Balancing a Tree (continued)
	Rotations
	Rotations
	BST ordering property after a rotation
	Single Right Rotation Implementation (example)
	Single Right Rotation Implementation (example) contd
	Single Right Rotation Implementation (example) contd
	Single Right Rotation Implementation (example) contd
	Single Right Rotation Implementation (example) contd
	Single Right Rotation Implementation (example) contd
	Single Right Rotation Implementation (example) contd
	Single Right Rotation Implementation (example) contd
	Single Right Rotation Implementation (example) contd
	Single Right Rotation Implementation (example) contd
	DSW Algorithm
	Algorithm createBackbone
	Algorithm createBackbone
	Algorithm createPerfectTree
	Algorithm createPerfectTree
	AVL Trees
	Why AVL Trees?
	Balancing an AVL Tree
	Double Right-Left Rotation
	Double Left-Right Rotation
	When to do Which Rotation
	Insertion
	Insertion: case 1
	Insertion: case 2
	Insertion: case 2 (contd)
	Insertion: case 3
	Insertion: case 3 (contd)
	Deletion
	Deletion: case 2 examples
	Deletion: case 2 examples (contd)
	Deletion: case 3 examples
	Binary Heaps
	What is a Binary Heap
	MinHeap and non-MinHeap examples
	MinHeap and non-MinHeap examples
	MaxHeap and non-MaxHeap examples
	MaxHeap and non-MaxHeap examples
	Array Representation of a Binary Heap
	Array Representation of a Binary Heap (contd.)
	Percolate Up
	Percolate Down
	MinHeap enqueue
	MinHeap Insertion Example
	Deleting an Arbitrary Key
	Example
	Changing the priority of a key
	Building a heap (top down)
	Building a heap (top down)
	Converting an array into a Binary heap �(Building a heap bottom-up)
	Converting an array into a MinHeap (Example)
	Heap Applications: Priority Queue
	Polish Notation and Expression Trees
	Polish Notation and Expression Trees
	Operations on Expression Trees
	Operations on Expression Trees
	Summary
	Summary (continued)
	Summary (continued)

